Caffarelli--Kohn--Nirenberg inequalities for Besov and Triebel--Lizorkin-type spaces
Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 24-57

Voir la notice de l'article provenant de la source Math-Net.Ru

We present some Caffarelli–Kohn–Nirenberg-type inequalities for Herz-type Besov–Triebel–Lizorkin spaces, Besov–Morrey and Triebel–Lizorkin–Morrey spaces. More precisely, we investigate the inequalities $$ ||f||_{\dot{k}_{v,\sigma}^{\alpha_1,r}}\leqslant c||f||_{\dot{K}_{u}^{\alpha_2,\delta}}^{1-\theta}||f||_{\dot{K}_{p}^{\alpha_3,\delta_1}A_\beta^s}^\theta $$ and $$ ||f||_{\mathcal{E}_{p,2,u}^\sigma}\leqslant c||f||_{M_\mu^\delta}^{1-\theta}||f||_{\mathcal{N}_{q,\beta,v}}^\theta, $$ with some appropriate assumptions on the parameters, where $\dot{k}_{v,\sigma}^{\alpha_1,r}$ are the Herz-type Bessel potential spaces, which are just the Sobolev spaces if $\alpha_1=0,1$ and $\sigma\in\mathbb{N}_0$, and $\dot{K}_p^{\alpha_3,\delta_1}A_\beta^s$ are Besov or Triebel–Lizorkin spaces if $\alpha_3=0$ and $\delta-1=p$. The usual Littlewood–Paley technique, Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sobolev inequalities are given.
@article{EMJ_2023_14_2_a2,
     author = {D. Drihem},
     title = {Caffarelli--Kohn--Nirenberg inequalities for {Besov} and {Triebel--Lizorkin-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {24--57},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a2/}
}
TY  - JOUR
AU  - D. Drihem
TI  - Caffarelli--Kohn--Nirenberg inequalities for Besov and Triebel--Lizorkin-type spaces
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 24
EP  - 57
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a2/
LA  - en
ID  - EMJ_2023_14_2_a2
ER  - 
%0 Journal Article
%A D. Drihem
%T Caffarelli--Kohn--Nirenberg inequalities for Besov and Triebel--Lizorkin-type spaces
%J Eurasian mathematical journal
%D 2023
%P 24-57
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a2/
%G en
%F EMJ_2023_14_2_a2
D. Drihem. Caffarelli--Kohn--Nirenberg inequalities for Besov and Triebel--Lizorkin-type spaces. Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 24-57. http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a2/