Caffarelli--Kohn--Nirenberg inequalities for Besov and Triebel--Lizorkin-type spaces
Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 24-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present some Caffarelli–Kohn–Nirenberg-type inequalities for Herz-type Besov–Triebel–Lizorkin spaces, Besov–Morrey and Triebel–Lizorkin–Morrey spaces. More precisely, we investigate the inequalities $$ ||f||_{\dot{k}_{v,\sigma}^{\alpha_1,r}}\leqslant c||f||_{\dot{K}_{u}^{\alpha_2,\delta}}^{1-\theta}||f||_{\dot{K}_{p}^{\alpha_3,\delta_1}A_\beta^s}^\theta $$ and $$ ||f||_{\mathcal{E}_{p,2,u}^\sigma}\leqslant c||f||_{M_\mu^\delta}^{1-\theta}||f||_{\mathcal{N}_{q,\beta,v}}^\theta, $$ with some appropriate assumptions on the parameters, where $\dot{k}_{v,\sigma}^{\alpha_1,r}$ are the Herz-type Bessel potential spaces, which are just the Sobolev spaces if $\alpha_1=0,1$ and $\sigma\in\mathbb{N}_0$, and $\dot{K}_p^{\alpha_3,\delta_1}A_\beta^s$ are Besov or Triebel–Lizorkin spaces if $\alpha_3=0$ and $\delta-1=p$. The usual Littlewood–Paley technique, Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sobolev inequalities are given.
@article{EMJ_2023_14_2_a2,
     author = {D. Drihem},
     title = {Caffarelli--Kohn--Nirenberg inequalities for {Besov} and {Triebel--Lizorkin-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {24--57},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a2/}
}
TY  - JOUR
AU  - D. Drihem
TI  - Caffarelli--Kohn--Nirenberg inequalities for Besov and Triebel--Lizorkin-type spaces
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 24
EP  - 57
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a2/
LA  - en
ID  - EMJ_2023_14_2_a2
ER  - 
%0 Journal Article
%A D. Drihem
%T Caffarelli--Kohn--Nirenberg inequalities for Besov and Triebel--Lizorkin-type spaces
%J Eurasian mathematical journal
%D 2023
%P 24-57
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a2/
%G en
%F EMJ_2023_14_2_a2
D. Drihem. Caffarelli--Kohn--Nirenberg inequalities for Besov and Triebel--Lizorkin-type spaces. Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 24-57. http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a2/

[1] D. R. Adams, Morrey spaces, Birkhäuser, 2015 | MR | Zbl

[2] A. Baernstein II, E. T. Sawyer, Embedding and multiplier theorems for $H^p(\mathbb{R}^n)$, Mem. Amer. Math. Soc., 53, no. 318, 1985 | MR

[3] H. Q. Bui, “Weighted Besov and Triebel spaces: interpolation by the real method”, Hiroshima Math. J., 12 (1982), 581–605 | MR | Zbl

[4] H. Q. Bui, “Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures”, J. Funct. Anal., 55 (1984), 39–62 | DOI | MR

[5] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[6] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[7] L. Caffarelli, R. Kohn, L. Nirenberg, “First order interpolation inequalities with weights”, Compos. Math., 53 (1984), 259–275 | MR

[8] A. Djeriou, D. Drihem, “On the continuity of pseudo-differential operators on multiplier spaces associated to Herz-type Triebel-Lizorkin spaces”, Mediterr. J. Math., 16 (2019), 153 | DOI | MR | Zbl

[9] D. Drihem, “Embeddings properties on Herz-type Besov and Triebel-Lizorkin spaces”, Math. Ineq and Appl., 16:2 (2013), 439–460 | MR | Zbl

[10] D. Drihem, “Sobolev embeddings for Herz-type Triebel-Lizorkin spaces”, Function Spaces and Inequalities, Springer Proceedings in Mathematics and Statistics, eds. P. Jain, H. J. Schmeisser, Springer, 2017 | MR | Zbl

[11] D. Drihem, “Complex interpolation of Herz-type Triebel-Lizorkin spaces”, Math. Nachr., 291:13 (2018), 2008–2023 | DOI | MR | Zbl

[12] D. Drihem, “Jawerth-Franke embeddings of Herz-type Besov and Triebel-Lizorkin spaces”, Funct. Approx. Comment. Math., 61:2 (2019), 207–226 | DOI | MR | Zbl

[13] D. Drihem, “Semilinear parabolic equations in Herz spaces”, Appl. Anal., 2022 | DOI | MR

[14] D. Drihem, H. Hebbache, “Continuity of non-regular pseudodifferential operators on variable Triebel-Lizorkin spaces”, Annales Polonici Mathematici, 122 (2019), 233–248 | DOI | MR | Zbl

[15] V. Felli, M. Schneider, “Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type”, J. Diff. Equations, 191:1 (2003), 121–142 | DOI | MR | Zbl

[16] H. G. Feichtinger, F. Weisz, “Herz spaces and summability of Fourier transforms”, Math. Nachr, 281:3 (2008), 309–324 | DOI | MR

[17] J. García-Cuerva, J.L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, 116, North-Holland, Amsterdam, 1985 | MR | Zbl

[18] V. S. Guliyev, “Generalized weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Math. J., 3:3 (2012), 33–61 | MR | Zbl

[19] D. D. Haroske, L. Skrzypczak, “On Sobolev and Franke-Jawerth embeddings of smoothness Morrey spaces”, Rev. Mat. Complut., 27 (2014), 541–573 | DOI | MR | Zbl

[20] E. Hernandez, D. Yang, “Interpolation of Herz-type Hardy spaces”, Illinois J. Math., 42 (1998), 564–581 | DOI | MR | Zbl

[21] C. Herz, “Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms”, J. Math. Mech., 18 (1968), 283–324 | MR

[22] M. Izuki, Y. Sawano, “Atomic decomposition for weighted Besov and Triebel-Lizorkin spaces”, Math. Nachr., 285 (2012), 103–126 | DOI | MR | Zbl

[23] P. G. Lemarié-Rieusset, “The role of Morrey spaces in the study of Navier-Stokes and Euler equations”, Eurasian Math. J., 3:3 (2012), 62–93 | MR | Zbl

[24] X. Li, D. Yang, “Boundedness of some sublinear operators on Herz spaces”, Illinois J. Math., 40 (1996), 484–501 | MR | Zbl

[25] Y. Li, D. Yang, L. Huang, Real-variable theory of Hardy spaces associated with generalized Herz spaces of Rafeiro and Samko, Lecture Notes in Mathematics, 2320, Springer, Cham, 2022 | MR

[26] S. Lu, D. Yang, “Herz-type Sobolev and Bessel potential spaces and their applications”, Sci. in China (Ser. A), 40 (1997), 113–129 | MR | Zbl

[27] S. Lu, D. Yang, G. Hu, Herz type spaces and their applications, Science Press, Beijing, 2008

[28] J. Marschall, “Weighted parabolic Triebel spaces of product type. Fourier multipliers and pseudo-differential operators”, Forum. Math., 3 (1991), 479–511 | DOI | MR | Zbl

[29] A. L. Mazzucato, “Decomposition of Besov-Morrey spaces”, Harmonic Analysis (Mount Holyoke 2001), Contemporary Math., 320, 2003, 279–294 | DOI | MR | Zbl

[30] A. L. Mazzucato, “Besov-Morrey spaces: function space theory and applications to non-linear PDE”, Trans. Am. Math. Soc., 355:4 (2003), 1297–1364 | DOI | MR | Zbl

[31] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[32] H-M. Nguyen, M. Squassina, “Fractional Caffarelli-Kohn-Nirenberg inequalities”, J. Funct. Anal., 274 (2018), 2661–2672 | DOI | MR | Zbl

[33] S. M. Nikol'skij, Approximation of function of several variables and imbedding theorems, Springer, Berlin, Germany, 1975 | MR

[34] H. Rafeiro, S. Samko, “Herz spaces meet Morrey type spaces and complementary Morrey type spaces”, J. Fourier Anal. Appl., 26 (2020), 74, 14 pp. | DOI | MR | Zbl

[35] M. A. Ragusa, “Operators in Morrey type spaces and applications”, Eurasian Math. J., 3:3 (2012), 94–109 | MR | Zbl

[36] Y. Sawano, S. Sugano, H. Tanaka, “Identification of the image of Morrey spaces by the fractional integral operators”, Proc. A. Razmadze Math. Inst., 149 (2009), 87–93 | MR | Zbl

[37] W. Sickel, “On pointwise multipliers for $F^s_{p,q}(\mathbb{R}^n)$ in case $\sigma_{p,q}/p$”, Ann. Mat. Pura. Appl., 176:1 (1999), 209–250 | DOI | MR | Zbl

[38] W. Sickel, “Smoothness spaces related to Morrey spaces a survey. I”, Eurasian Math. J., 3:3 (2012), 110–149 | MR | Zbl

[39] W. Sickel, “Smoothness spaces related to Morrey spaces a survey. II”, Eurasian Math. J., 4:1 (2013), 82–124 | MR | Zbl

[40] L. Tang, D. Yang, “Boundedness of vector-valued operators on weighted Herz”, Approx Th. Appl., 16 (2000), 58–70 | DOI | MR | Zbl

[41] L. Tang, J. Xu, “Some properties of Morrey type Besov-Triebel spaces”, Math. Nachr., 278 (2005), 904–917 | DOI | MR | Zbl

[42] H. Triebel, Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl

[43] H. Triebel, Theory of function spaces, v. II, Birkhäuser, Basel, 1992 | MR | Zbl

[44] H. Triebel, Local function spaces, heat and Navier-Stokes equations, European Math. Soc. Publishing House, Zürich, 2013 | MR | Zbl

[45] Y. Tsutsui, “The Navier-Stokes equations and weak Herz spaces”, Adv. Differential Equations, 16 (2011), 1049–1085 | DOI | MR | Zbl

[46] J. Xu, “Equivalent norms of Herz type Besov and Triebel-Lizorkin spaces”, J. Funct. Spaces Appl., 3 (2005), 17–31 | DOI | MR

[47] J. Xu, “Decompositions of non-homogeneous Herz-type Besov and Triebel-Lizorkin spaces”, Sci. China. Math., 47:2 (2014), 315–331 | MR

[48] J. Xu, D. Yang, “Applications of Herz-type Triebel-Lizorkin spaces”, Acta Math. Sci (Ser. B), 23 (2003), 328–338 | DOI | MR | Zbl

[49] J. Xu, D. Yang, “Herz-type Triebel-Lizorkin spaces, I”, Acta Math. Sci (English Ed.), 21:3 (2005), 643–654 | MR | Zbl

[50] B. Xuan, “The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights”, Nonlinear Anal., Theory Methods Appl., 62 (2005), 703–725 | DOI | MR | Zbl

[51] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, 2005, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[52] Y. Zhao, D. Yang, Y. Zhang, “Mixed-norm Herz spaces and their applications in related Hardy spaces”, Anal. Appl. (Singap.), 2022 (to appear) | MR