On estimates of non-increasing rearrangement of generalized fractional maximal function
Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 13-23

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a sharp pointwise estimate of the non-increasing rearrangement of the generalized fractional maximal function $(M_\Phi f)(x)$ via an expression involving the non-increasing rearrangement of $f$. It is shown that the obtained estimate is more sharp than the inequality which follows from the estimate for the generalized Riesz potential.
@article{EMJ_2023_14_2_a1,
     author = {N. A. Bokayev and A. Gogatishvili and A. N. Abek},
     title = {On estimates of non-increasing rearrangement of generalized fractional maximal function},
     journal = {Eurasian mathematical journal},
     pages = {13--23},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a1/}
}
TY  - JOUR
AU  - N. A. Bokayev
AU  - A. Gogatishvili
AU  - A. N. Abek
TI  - On estimates of non-increasing rearrangement of generalized fractional maximal function
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 13
EP  - 23
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a1/
LA  - en
ID  - EMJ_2023_14_2_a1
ER  - 
%0 Journal Article
%A N. A. Bokayev
%A A. Gogatishvili
%A A. N. Abek
%T On estimates of non-increasing rearrangement of generalized fractional maximal function
%J Eurasian mathematical journal
%D 2023
%P 13-23
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a1/
%G en
%F EMJ_2023_14_2_a1
N. A. Bokayev; A. Gogatishvili; A. N. Abek. On estimates of non-increasing rearrangement of generalized fractional maximal function. Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 13-23. http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a1/