Iterated discrete Hardy-type inequalities
Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 81-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss new discrete inequalities of Hardy-type involving iterated operators. Under some conditions on weight sequences, we establish necessary and sufficient conditions for the validity of these inequalities.
@article{EMJ_2023_14_1_a6,
     author = {N. Zhangabergenova and A. Temirkhanova},
     title = {Iterated discrete {Hardy-type} inequalities},
     journal = {Eurasian mathematical journal},
     pages = {81--95},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a6/}
}
TY  - JOUR
AU  - N. Zhangabergenova
AU  - A. Temirkhanova
TI  - Iterated discrete Hardy-type inequalities
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 81
EP  - 95
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a6/
LA  - en
ID  - EMJ_2023_14_1_a6
ER  - 
%0 Journal Article
%A N. Zhangabergenova
%A A. Temirkhanova
%T Iterated discrete Hardy-type inequalities
%J Eurasian mathematical journal
%D 2023
%P 81-95
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a6/
%G en
%F EMJ_2023_14_1_a6
N. Zhangabergenova; A. Temirkhanova. Iterated discrete Hardy-type inequalities. Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 81-95. http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a6/

[1] G. Bennett, “Some elementary inequalities III”, Quart. J. Math. Oxford Ser., 42:1 (1991), 149–174 | DOI | MR | Zbl

[2] A. L. Bernardis, P. Ortega Salvador, “Some new iterated Hardy-type inequalities and applications”, J. Math. Ineq., 11:2 (2017), 577–594 | DOI | MR | Zbl

[3] V. I. Burenkov, R. Oinarov, “Necessary and suffcient conditions for boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morrey-type space”, Math. Ineq. Appl, 16:1 (2013), 1–19 | DOI | MR | Zbl

[4] A. Gogatishvili, R. Mustafayev, L. E. Persson, “Some new iterated Hardy-type inequalities: the case $\theta = 1$”, J. Ineq. Appl., 2013:515 (2013) | DOI | MR

[5] A. Gogatishvili, R. Mustafayev, L. E. Persson, “Some new iterated Hardy-type inequalities”, J. Funct. Spaces Appl., 2012 | DOI | MR

[6] M. L. Goldman, E. G. Bakhtigareeva, “Some classes of operators in general Morrey-type spaces”, Eurasian mathematical journal, 11:4 (2020), 35–44 | DOI | MR | Zbl

[7] P. Jain, S. Kanjilal, V. D. Stepanov, E. P. Ushakova, “Bilinear Hardy-Steklov operators”, Math. Notes, 104 (2018), 823–832 | DOI | MR

[8] A. Kalybay, “On boundedness of the conjugate multidimensional Hardy operator from a Lebesque space to a local Morrey-type space”, Int. J. Math. Anal., 11:8 (2014), 539–553 | DOI | MR

[9] R. Oinarov, A. Kalybay, “Boundedness of Riemann-Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian mathematical journal, 12:1 (2021), 39–48 | DOI | MR | Zbl

[10] R. Oinarov, A. Kalybay, “Weighted inequalities for a class of semiadditive operators”, Ann. Funct. Anal., 6:4 (2015), 155–171 | DOI | MR | Zbl

[11] R. Oinarov, B. K. Omarbayeva, A. M. Temirkhanova, “Discrete iterated Hardy-type inequalities with three weights”, Journal of Mathematics, Mechanics and Computer Science, 105:1 (2020), 19–29 | DOI | MR

[12] B. K. Omarbayeva, L. E. Persson, A. M. Temirkhanova, “Weighted iterated discrete Hardy-type inequalities”, Math. Ineq. Appl., 23:3 (2020), 943–959 | DOI | MR | Zbl

[13] D. V. Prokhorov, “On a class of weighted inequalities containing quasilinear operators”, Proc. Steklov Inst. Math., 293 (2016), 272–287 | DOI | MR | Zbl

[14] D. V. Prokhorov, V. D. Stepanov, “On weighted Hardy inequalities in mixed norms”, Proc. Steklov Inst. Math., 283 (2013), 149–164 (in Russian) | DOI | MR | Zbl

[15] M. A. Senouci, “Boundedness of Riemann-Liouville fractional integral operator in Morrey spaces”, Eurasian mathematical journal, 12:1 (2021), 82–91 | DOI | MR | Zbl

[16] V. D. Stepanov, G. E. Shambilova, “On iterated and bilinear integral Hardy-type operators”, Math. Ineq. Appl., 22:4 (2019), 1505–1533 | DOI | MR | Zbl