An introduction to composition operators in Sobolev spaces
Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 39-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a survey of the results on the composition operators in classical Sobolev spaces, obtained between 1975 and 2020. A first version of these notes were the subject of a series of lectures, given in Padova University in January 2018.
@article{EMJ_2023_14_1_a3,
     author = {G. Bourdaud},
     title = {An introduction to composition operators in {Sobolev} spaces},
     journal = {Eurasian mathematical journal},
     pages = {39--54},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a3/}
}
TY  - JOUR
AU  - G. Bourdaud
TI  - An introduction to composition operators in Sobolev spaces
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 39
EP  - 54
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a3/
LA  - en
ID  - EMJ_2023_14_1_a3
ER  - 
%0 Journal Article
%A G. Bourdaud
%T An introduction to composition operators in Sobolev spaces
%J Eurasian mathematical journal
%D 2023
%P 39-54
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a3/
%G en
%F EMJ_2023_14_1_a3
G. Bourdaud. An introduction to composition operators in Sobolev spaces. Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 39-54. http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a3/

[1] R. Adams, J. Fournier, Sobolev spaces, Elsevier, 2003 | MR

[2] A. Ancona, “Continuité des contractions dans les espaces de Dirichlet”, C.R.A.S., 282 (1976), 871–873 | MR | Zbl

[3] J. Appell, P. Zabrejko, Nonlinear superposition operators, Cambridge U.P, 1990 | MR | Zbl

[4] G. Bourdaud, “Le calcul fonctionnel dans les espaces de Sobolev”, Invent. math., 104 (1991), 435–446 | DOI | MR | Zbl

[5] G. Bourdaud, “Superposition in homogeneous and vector valued Sobolev spaces”, Trans. Amer. Math. Soc., 362 (2010), 6105–6130 | DOI | MR | Zbl

[6] G. Bourdaud, M. Lanza de Cristoforis, “Regularity of the symbolic calculus in Besov algebras”, Studia Math., 184 (2008), 271–298 | DOI | MR | Zbl

[7] G. Bourdaud, M. Moussai, “Continuity of composition operators in Sobolev spaces”, Ann. I. H. Poincaré, 36 (2019), 2053–2063 | DOI | MR | Zbl

[8] G. Bourdaud, W. Sickel, “Composition operators on function spaces with fractional order of smoothness”, RIMS Kokyuroku Bessatsu, 26 (2011), 93–132 | MR

[9] B. E.J. Dahlberg, “A note on Sobolev spaces”, Proc. Symp. Pure Math., 35:1 (1979), 183–185 | DOI | MR | Zbl

[10] J. Foran, Fundamentals of real analysis, Marcel Dekker, 1991 | MR | Zbl

[11] S. Igari, “Sur les fonctions qui opėrent sur l'espace $\hat{A}^2$”, Ann. Inst. Fourier, 15 (1965), 525–536 | DOI | MR | Zbl

[12] M. Marcus, V. J. Mizel, “Complete characterization of functions which act via superposition on Sobolev spaces”, Trans. Amer. Math. Soc., 251 (1979), 187–218 | DOI | MR | Zbl

[13] M. Marcus, V. J. Mizel, “Every superposition operator mapping one Sobolev space into another is continuous”, J. Funct. Anal., 33 (1979), 217–229 | DOI | MR | Zbl

[14] W. Rudin, Functional analysis, McGraw-Hill, 1973 | MR | Zbl

[15] W. Rudin, Real and complex analysis, 3rd ed, McGraw-Hill, 1987 | MR | Zbl

[16] T. Runst, W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter, Berlin, 1996 | MR | Zbl

[17] K. Yosida, Functional analysis, 6th edition, Springer, 1980 | MR | Zbl