On the Lagrange multiplier rule for minimizing sequences
Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 8-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, an optimization problem with equality-type constraints is studied. It is assumed that the minimizing function and the functions defining the constraints are Frechet differentiable, the set of the admissible points is nonempty and the minimizing function is bounded below on the set of admissible points. Under these assumptions we obtain an estimate of the derivative of the Lagrange function. Moreover, we prove the existence of a minimizing sequence $\{x^n\}$ and a sequence of unit Lagrange multipliers $\{\lambda^n\}$ such that the sequence of the values of derivative of the Lagrange function at the point $(x^n, \lambda^n)$ tends zero. This result is a generalization of the known assertion stating that for a bounded below differentiable function $f$ there exists a minimizing sequence $\{x^n\}$ such that the values of the derivative $f'(x^n)$ tend to zero. As an auxiliary tool, there was introduced and studied the property of the directional covering for mappings between normed spaces. There were obtained sufficient conditions of directional covering for Frechet differentiable mappings.
@article{EMJ_2023_14_1_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {On the {Lagrange} multiplier rule for minimizing sequences},
     journal = {Eurasian mathematical journal},
     pages = {8--15},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - On the Lagrange multiplier rule for minimizing sequences
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 8
EP  - 15
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a0/
LA  - en
ID  - EMJ_2023_14_1_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T On the Lagrange multiplier rule for minimizing sequences
%J Eurasian mathematical journal
%D 2023
%P 8-15
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a0/
%G en
%F EMJ_2023_14_1_a0
A. V. Arutyunov; S. E. Zhukovskiy. On the Lagrange multiplier rule for minimizing sequences. Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 8-15. http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a0/

[1] A. V. Arutyunov, “Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points”, Proc. Steklov Inst. Math., 291:1 (2015), 24–37 | DOI | MR | Zbl

[2] A. V. Arutyunov, “Necessary extremum conditions and an inverse function theorem without a priori normality assumptions”, Proc. Steklov Inst. Math., 236, 2002, 25–36 | MR | Zbl

[3] A. Arutyunov, N. Bobylev, S. Korovin, “One remark to Ekeland's variational principle”, Computers Math. Appl., 34:2–4 (1997), 267–271 | DOI | MR | Zbl

[4] A. Arutyunov, V. Obukhovskii, Convex, set-valued analysis, De Gruyter, Berlin, 2016 | MR

[5] A. V. Arutyunov, R. B. Vinter, “A simple “finite approximations proof” of the Pontryagin maximum principle under reduced differentiability hypotheses”, Set-Valued Var. Anal. 12, 2:1 (2004), 5–24 | DOI | MR | Zbl

[6] J.-P. Aubin, I. Ekeland, Applied nonlinear anlysis, J. Wiley Sons, N.Y., 1984 | MR

[7] N. A. Bobylyev, S. V. Emel'yanov, S. K. Korovin, Geometrical methods in variational problems, Magistr, M., 1998 | MR

[8] M. J. Fabian, D. Preiss, “A generalization of the interior mapping theorem of Clarke and Pourciau”, Comment. Math. Univ. Carolin, 28:2 (1987), 311–324 | MR | Zbl

[9] H. Halkin, “Implicit functions and optimization problems without continuous differentiability of the data”, SIAM J. Control, 12 (1974), 229–236 | DOI | MR | Zbl

[10] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, North-Holand Publ. Comp., Amsterdam, 1979 | MR | Zbl

[11] L. Nirenberg, Topics in nonlinear functional analysis, Courant Inst. of Math. Sciences, 1974 | MR | Zbl