Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_4_a6, author = {N. T. Tleukhanova and A. N. Bashirova}, title = {Multipliers of {Fourier--Haar} series in {Lorentz} spaces}, journal = {Eurasian mathematical journal}, pages = {82--87}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a6/} }
N. T. Tleukhanova; A. N. Bashirova. Multipliers of Fourier--Haar series in Lorentz spaces. Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 82-87. http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a6/
[1] A. N. Bashirova, E. D. Nursultanov, “On the inequality of different metrics for multiple Fourier-Haar series”, Eurasian Math. J., 12:3 (2021), 90–93 | DOI | MR | Zbl
[2] I. B. Bryskin, O. V. Lelond, E. M. Semenov, “Multipliers of the Fourier-Haar series”, Siberian Math. J., 41:4 (2000), 626–633 | DOI | MR | Zbl
[3] V. I. Burenkov, E. D. Nursultanov, “Interpolation theorems for nonlinear urysohn integral operators in general Morrey-type spaces”, Eurasian Math. J., 11:4 (2020), 87–94 | DOI | MR | Zbl
[4] D. L. Burkholder, “A nonlinear partial differential equation and unconditional constant of the Haar system in $L^p$”, Bull. Amer. Math. Soc., 1982, no. 7, 591–595 | DOI | MR | Zbl
[5] M. Girardi, “Operator-valued Fourier Haar multipliers”, J. Math. Anal. Appl., 325 (2007), 1314–1326 | DOI | MR | Zbl
[6] B. S. Kashin, A. A. Saakyan, Orthogonal series, Nauka, M., 1984, 496 pp. | MR | Zbl
[7] V. G. Krotov, “Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$”, Math. Notes, 23:5 (1978), 376–382 | DOI | MR | Zbl
[8] O. V. Lelond, E. M. Semenov, S. N. Uksusov, “The space of Fourier-Haar multipliers”, Siberian Math. J., 46:1 (2005), 103–110 | DOI | MR | Zbl
[9] J. Marcinkiewicz, “Sur les multiplicateurs des series de Fourier”, Studia Math., 8 (1939), 78–91 | DOI | MR | Zbl
[10] I. Novikov, E. Semenov, Haar series and linear operators, Cluver Acad. Publ., Dordrecht, 1997, 218 pp. | MR
[11] E. D. Nursultanov, T. U. Aubakirov, “The Hardy-Littlewood theorem for Fourier-Haar series”, Math. Notes, 73:3 (2003), 314–320 | MR | Zbl
[12] E. D. Nursultanov, “Concerning the multiplicators of Fourier series in the trigonometric system”, Math. Notes, 63:2 (1998), 205–214 | DOI | MR | Zbl
[13] E. D. Nursultanov, N. T. Tleukhanova, “Multipliers of multiple Fourier series”, Proc. Steklov Inst. Math., 227, 1999, 231–236 | MR | Zbl
[14] E. D. Nursultanov, N. T. Tleukhanova, “Lower and upper bounds for the norm of multipliers of multiple trigonometric Fourier series in Lebesgue spaces”, Funct. Anal. Appl., 34:2 (2000), 151–153 | DOI | MR | Zbl
[15] E. Nursultanov, L. Sarybekova, N. Tleukhanova, “Some new Fourier multiplier results of Lizorkin and Hormander types”, Springer Proc. Functional analysis in interdisciplinary applications, Math. Stat., 216, Springer, Cham, 2017, 58–82 | MR | Zbl
[16] E. D. Nursultanov, “On the coefficients of multiple Fourier series in $L^p$ spaces”, Izv. Math., 64:1 (2000), 93–120 | DOI | MR | Zbl
[17] L-E. Persson, L. Sarybekova, N. Tleukhanova, “A Lizorkin theorem on Fourier series multipliers for strong regular systems”, Springer Proc. Analysis for science, engineering and beyond, Math., 6, Springer, Heidelberg, 2012, 305–317 | DOI | MR | Zbl
[18] N. T. Tleukhanova, A. Bakhyt, “On trigonometric Fourier series multipliers in $\lambda_{p,q}$ spaces”, Eurasian Math. J., 12:1 (2021), 103–106 | DOI | MR | Zbl
[19] N. T. Tleukhanova, K. K. Sadykova, “O-Neil-type inequalities for convolutions in anisotropic Lorentz spaces”, Eurasian Math. J., 10:3 (2019), 68–83 | DOI | MR | Zbl
[20] L. O. Sarybekova, T. V. Tararykova, N. T. Tleukhanova, “On a generalization of the Lizorkin theorem on Fourier multipliers”, Math. Inequal. Appl., 13:3 (2010), 613–624 | MR | Zbl
[21] E. M. Semenov, S. N. Uksusov, “Multipliers of the Haar series”, Siberian Math. J., 53:2 (2012), 310–315 | DOI | MR | Zbl
[22] E. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, 1970 | MR | Zbl
[23] H. M. Wark, “Operator-valued Fourier Haar multipliers on vector-valued $L^1$ spaces”, J. Math. Anal. Appl., 450 (2017), 1148–1156 | DOI | MR | Zbl
[24] S. Yano, “On a lemma of Marcinkiewicz and its applications to Fourier series”, Tohoku Math. J., 1959, no. 11, 195–215 | MR
[25] A. Zygmund, Trigonometric series, v. 2, Cambridge University Press, 1959 | MR | Zbl