Multipliers of Fourier--Haar series in Lorentz spaces
Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 82-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article provides a complete description of the multipliers of the Fourier series along the Haar system in the Lorentz spaces $L_{p,r}$. Necessary and sufficient conditions are obtained ensuring that $\{\lambda_k^j\}_{k=0,j=1}^{\infty,2^k}\in m(L_{p,r}\to L_{q,s})$. This work generalizes and supplements the result of work [8].
@article{EMJ_2022_13_4_a6,
     author = {N. T. Tleukhanova and A. N. Bashirova},
     title = {Multipliers of {Fourier--Haar} series in {Lorentz} spaces},
     journal = {Eurasian mathematical journal},
     pages = {82--87},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a6/}
}
TY  - JOUR
AU  - N. T. Tleukhanova
AU  - A. N. Bashirova
TI  - Multipliers of Fourier--Haar series in Lorentz spaces
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 82
EP  - 87
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a6/
LA  - en
ID  - EMJ_2022_13_4_a6
ER  - 
%0 Journal Article
%A N. T. Tleukhanova
%A A. N. Bashirova
%T Multipliers of Fourier--Haar series in Lorentz spaces
%J Eurasian mathematical journal
%D 2022
%P 82-87
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a6/
%G en
%F EMJ_2022_13_4_a6
N. T. Tleukhanova; A. N. Bashirova. Multipliers of Fourier--Haar series in Lorentz spaces. Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 82-87. http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a6/

[1] A. N. Bashirova, E. D. Nursultanov, “On the inequality of different metrics for multiple Fourier-Haar series”, Eurasian Math. J., 12:3 (2021), 90–93 | DOI | MR | Zbl

[2] I. B. Bryskin, O. V. Lelond, E. M. Semenov, “Multipliers of the Fourier-Haar series”, Siberian Math. J., 41:4 (2000), 626–633 | DOI | MR | Zbl

[3] V. I. Burenkov, E. D. Nursultanov, “Interpolation theorems for nonlinear urysohn integral operators in general Morrey-type spaces”, Eurasian Math. J., 11:4 (2020), 87–94 | DOI | MR | Zbl

[4] D. L. Burkholder, “A nonlinear partial differential equation and unconditional constant of the Haar system in $L^p$”, Bull. Amer. Math. Soc., 1982, no. 7, 591–595 | DOI | MR | Zbl

[5] M. Girardi, “Operator-valued Fourier Haar multipliers”, J. Math. Anal. Appl., 325 (2007), 1314–1326 | DOI | MR | Zbl

[6] B. S. Kashin, A. A. Saakyan, Orthogonal series, Nauka, M., 1984, 496 pp. | MR | Zbl

[7] V. G. Krotov, “Unconditional convergence of Fourier series with respect to the Haar system in the spaces $\Lambda_\omega^p$”, Math. Notes, 23:5 (1978), 376–382 | DOI | MR | Zbl

[8] O. V. Lelond, E. M. Semenov, S. N. Uksusov, “The space of Fourier-Haar multipliers”, Siberian Math. J., 46:1 (2005), 103–110 | DOI | MR | Zbl

[9] J. Marcinkiewicz, “Sur les multiplicateurs des series de Fourier”, Studia Math., 8 (1939), 78–91 | DOI | MR | Zbl

[10] I. Novikov, E. Semenov, Haar series and linear operators, Cluver Acad. Publ., Dordrecht, 1997, 218 pp. | MR

[11] E. D. Nursultanov, T. U. Aubakirov, “The Hardy-Littlewood theorem for Fourier-Haar series”, Math. Notes, 73:3 (2003), 314–320 | MR | Zbl

[12] E. D. Nursultanov, “Concerning the multiplicators of Fourier series in the trigonometric system”, Math. Notes, 63:2 (1998), 205–214 | DOI | MR | Zbl

[13] E. D. Nursultanov, N. T. Tleukhanova, “Multipliers of multiple Fourier series”, Proc. Steklov Inst. Math., 227, 1999, 231–236 | MR | Zbl

[14] E. D. Nursultanov, N. T. Tleukhanova, “Lower and upper bounds for the norm of multipliers of multiple trigonometric Fourier series in Lebesgue spaces”, Funct. Anal. Appl., 34:2 (2000), 151–153 | DOI | MR | Zbl

[15] E. Nursultanov, L. Sarybekova, N. Tleukhanova, “Some new Fourier multiplier results of Lizorkin and Hormander types”, Springer Proc. Functional analysis in interdisciplinary applications, Math. Stat., 216, Springer, Cham, 2017, 58–82 | MR | Zbl

[16] E. D. Nursultanov, “On the coefficients of multiple Fourier series in $L^p$ spaces”, Izv. Math., 64:1 (2000), 93–120 | DOI | MR | Zbl

[17] L-E. Persson, L. Sarybekova, N. Tleukhanova, “A Lizorkin theorem on Fourier series multipliers for strong regular systems”, Springer Proc. Analysis for science, engineering and beyond, Math., 6, Springer, Heidelberg, 2012, 305–317 | DOI | MR | Zbl

[18] N. T. Tleukhanova, A. Bakhyt, “On trigonometric Fourier series multipliers in $\lambda_{p,q}$ spaces”, Eurasian Math. J., 12:1 (2021), 103–106 | DOI | MR | Zbl

[19] N. T. Tleukhanova, K. K. Sadykova, “O-Neil-type inequalities for convolutions in anisotropic Lorentz spaces”, Eurasian Math. J., 10:3 (2019), 68–83 | DOI | MR | Zbl

[20] L. O. Sarybekova, T. V. Tararykova, N. T. Tleukhanova, “On a generalization of the Lizorkin theorem on Fourier multipliers”, Math. Inequal. Appl., 13:3 (2010), 613–624 | MR | Zbl

[21] E. M. Semenov, S. N. Uksusov, “Multipliers of the Haar series”, Siberian Math. J., 53:2 (2012), 310–315 | DOI | MR | Zbl

[22] E. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, 1970 | MR | Zbl

[23] H. M. Wark, “Operator-valued Fourier Haar multipliers on vector-valued $L^1$ spaces”, J. Math. Anal. Appl., 450 (2017), 1148–1156 | DOI | MR | Zbl

[24] S. Yano, “On a lemma of Marcinkiewicz and its applications to Fourier series”, Tohoku Math. J., 1959, no. 11, 195–215 | MR

[25] A. Zygmund, Trigonometric series, v. 2, Cambridge University Press, 1959 | MR | Zbl