Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_4_a4, author = {A. K. Kalidolday and E. D. Nursultanov}, title = {Marcinkiewicz's interpolation theorem for linear operators on net spaces}, journal = {Eurasian mathematical journal}, pages = {61--69}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a4/} }
TY - JOUR AU - A. K. Kalidolday AU - E. D. Nursultanov TI - Marcinkiewicz's interpolation theorem for linear operators on net spaces JO - Eurasian mathematical journal PY - 2022 SP - 61 EP - 69 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a4/ LA - en ID - EMJ_2022_13_4_a4 ER -
A. K. Kalidolday; E. D. Nursultanov. Marcinkiewicz's interpolation theorem for linear operators on net spaces. Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 61-69. http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a4/
[1] T. U. Aubakirov, E. D. Nursultanov, “The Hardy-Littlewood theorem for Fourier-Haar series”, Math. Notes, 73:3 (2003), 314–320 | DOI | MR | Zbl
[2] R. Akylzhanov, M. Ruzhansky, “$L_p-L_q$ multipliers on locally compact groups”, J. Fun. Anal., 278:3 (2020), 1–49 | MR
[3] R. Akylzhanov, M. Ruzhansky, “Net spaces on lattices, Hardy-Littlewood type inequalities, and their converses”, Eurasian Math. J., 8:3 (2017), 10–27 | MR | Zbl
[4] R. Akylzhanov, M. Ruzhansky, E. D. Nursultanov, “Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and $L_p-L_q$ Fourier multipliers on compact homogeneous manifolds”, J. Math. Anal. Appl, 479:2 (2019), 1519–1548 | DOI | MR | Zbl
[5] O. G. Avsyankin, “On integral operators with homogeneous kernels in Morrey spaces”, Eurasian Math. J., 12:1 (2021), 92–96 | DOI | MR | Zbl
[6] A. N. Bashirova, A. H. Kalidolday, E. D. Nursultanov, “Interpolation theorem for anisotropic net spaces”, Russian Mathematics (Izvestiya VUZ. Matematika), 8 (2021), 1–13 | MR
[7] A. N. Bashirova, E. D. Nursultanov, “On the inequality of different metrics for multiple Fourier-Haar series”, Eurasian Math. J., 12:3 (2021), 90–93 | DOI | MR | Zbl
[8] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer, 1976 | MR | Zbl
[9] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Izdat. “Nauka”, M., 1975 (in Russian) | MR
[10] O. Blasco, A. Ruiz, L. Vega, “Non interpolation in Morrey-Campanato and block spaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci, 4 (1999), 31–40 | MR
[11] V. I. Burenkov, D. K. Chigambayeva, E. D. Nursultanov, “Marcinkiewicz-type interpolation theorem and estimates for convolutions for Morrey-type spaces”, Eurasian Math. J., 9:2 (2018), 82–88 | DOI | MR | Zbl
[12] V. I. Burenkov, E. D. Nursultanov, “Interpolation theorems for nonlinear operators in general Morrey-type spaces and their applications”, Proc. Steklov Inst. Math., 312, 2021, 124–149 | DOI | MR
[13] V. I. Burenkov, E. D. Nursultanov, “Interpolation theorems for nonlinear Urysohn integral operators in general Morrey-type spaces”, Eurasian Math. J., 11:4 (2020), 87–94 | DOI | MR | Zbl
[14] V. I. Burenkov, M. A. Senouci, “Boundedness of the generalized Riesz potential in local Morrey type spaces”, Eurasian Math. J., 12:4 (2021), 92–98 | DOI | MR
[15] A. H. Kalidolday, E. D. Nursultanov, Interpolation properties of certain classes of net spaces, arXiv: 2107.10633 [math.FA] | Zbl
[16] P. G. Lemarié-Rieusset, “Multipliers and Morrey spaces”, Potential Analysis, 38:3 (2013), 741–752 | DOI | MR | Zbl
[17] P. G. Lemarié-Rieusset, “Erratum to: Multipliers and Morrey spaces”, Potential Analysis, 41:4 (2014), 1359–1362 | DOI | MR | Zbl
[18] E. D. Nursultanov, “Net spaces and inequalities of Hardy-Littlewood type”, Sb. Math., 189:3 (1998), 399–419 | DOI | MR | Zbl
[19] E. D. Nursultanov, “On the coefficients of multiple Fourier series in $L^p$ spaces”, Izv. Math., 64:1 (2000), 93–120 | DOI | MR | Zbl
[20] E. D. Nursultanov, “Application of interpolational methods to the study of properties of functions of several variables”, Mathematical Notes, 75 (2004), 341–351 | DOI | MR | Zbl
[21] E. D. Nursultanov, T. U. Aubakirov, “Interpolation methods for stochastic processes spaces”, Abstr. Appl. Anal., 2013 (2013), 1–12 | DOI | MR
[22] E. D. Nursultanov, A. G. Kostyuchenko, “Theory of control of “catastrophes””, Russ. Math. Surv., 53:3 (1998), 628–629 | DOI | MR | Zbl
[23] E. D. Nursultanov, N. T. Tleukhanova, “Lower and upper bounds for the norm of multipliers of multiple trigonometric Fourier series in Lebesgue spaces”, Func. Anal. Appl., 34:2 (2000), 151–153 | DOI | MR | Zbl
[24] E. D. Nursultanov, S. Tikhonov, “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21 (2011), 950–981 | DOI | MR | Zbl
[25] A. Ruiz, L. Vega, “Corrigenda to “Unique continuation for Schrodinger operators” and a remark on interpolation of Morrey spaces”, Publicacions Matemátiques, 39 (1995), 405–411 | DOI | MR | Zbl
[26] M. A. Senouci, “Boundedness of Riemann-Liouville fractional integral operator in Morrey spaces”, Eurasian Math. J., 12:1 (2021), 82–91 | DOI | MR | Zbl
[27] N. T. Tleukhanova, A. Bakhyt, “On trigonometric Fourier series multipliers in $\lambda_{p,q}$ spaces”, Eurasian Math. J., 12:1 (2021), 103–106 | DOI | MR | Zbl
[28] N. T. Tleukhanova, K. K. Sadykova, “O'Neil-type inequalities for convolutions in anisotropic Lorentz spaces”, Eurasian Math. J., 10:3 (2019), 68–83 | DOI | MR | Zbl