Methods of trigonometric approximation and generalized smoothness.~II
Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 18-43

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the equivalence of approximation errors in $L_p$-spaces ($0$) with respect to approximation processes, generalized $K$-functionals and appropriate moduli of smoothness. The results are used to derive various characterizations of periodic Besov spaces by means of constructive approximation and moduli of smoothness. The main focus lies on spaces $\mathbb{B}_{p,q}^s(\mathbb{T}^d)$, where $0 p 1$, $0 q \leqslant\infty$ and $s > 0$.
@article{EMJ_2022_13_4_a1,
     author = {S. Artamonov and K. Runovski and H.-J. Schmeisser},
     title = {Methods of trigonometric approximation and generalized {smoothness.~II}},
     journal = {Eurasian mathematical journal},
     pages = {18--43},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a1/}
}
TY  - JOUR
AU  - S. Artamonov
AU  - K. Runovski
AU  - H.-J. Schmeisser
TI  - Methods of trigonometric approximation and generalized smoothness.~II
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 18
EP  - 43
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a1/
LA  - en
ID  - EMJ_2022_13_4_a1
ER  - 
%0 Journal Article
%A S. Artamonov
%A K. Runovski
%A H.-J. Schmeisser
%T Methods of trigonometric approximation and generalized smoothness.~II
%J Eurasian mathematical journal
%D 2022
%P 18-43
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a1/
%G en
%F EMJ_2022_13_4_a1
S. Artamonov; K. Runovski; H.-J. Schmeisser. Methods of trigonometric approximation and generalized smoothness.~II. Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 18-43. http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a1/