Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_4_a1, author = {S. Artamonov and K. Runovski and H.-J. Schmeisser}, title = {Methods of trigonometric approximation and generalized {smoothness.~II}}, journal = {Eurasian mathematical journal}, pages = {18--43}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a1/} }
TY - JOUR AU - S. Artamonov AU - K. Runovski AU - H.-J. Schmeisser TI - Methods of trigonometric approximation and generalized smoothness.~II JO - Eurasian mathematical journal PY - 2022 SP - 18 EP - 43 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a1/ LA - en ID - EMJ_2022_13_4_a1 ER -
S. Artamonov; K. Runovski; H.-J. Schmeisser. Methods of trigonometric approximation and generalized smoothness.~II. Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 18-43. http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a1/
[1] N. Aronszajn, Boundary values of functions with finite Dirichlet integral, Tebchn. Report 14, Univ. of Kansas, 1955, 77–94
[2] S. Artamonov, “On some properties of a modulus of continuity related to the Riesz derivative”, Scientific Notes of the Taurida National V.I. Vernadsky University. Series ‘Physics and Mathematics Sciences’, 24(63):3 (2011), 10–22 (in Russian)
[3] S. Artamonov, “Quality of approximation by Fourier means in terms of general moduli of smoothness”, Mat. Zametki, 98:1 (2015), 3–11 | DOI | MR | Zbl
[4] S. Artamonov, K. V. Runovski, H.-J. Schmeisser, “Periodic Besov spaces and generalized moduli of smoothness”, Mat. Zametki, 108:4 (2020), 617–621 (in Russian) | DOI | MR | Zbl
[5] S. Artamonov, K. V. Runovski H. J. Schmeisser, “Besov spaces with generalized smoothness and summability of multiple Fourier series”, J. Approx. Theory, 284 (2022), 105822 | DOI | MR
[6] O. V. Besov, “On a family of function spaces in connection with embeddings and extensions”, Trudy Mat. Inst. Steklov, 60, 1961, 42–81 (in Russian) | MR | Zbl
[7] O. V. Besov, “On spaces of smoothness zero”, Math. Sb., 203 (2012), 3–16 | DOI | MR | Zbl
[8] R. A. DeVore, G. G. Lorentz, Constructive approximation, Springer-Verlag, Berlin-Heidelberg, 1993 | MR | Zbl
[9] R. A. DeVore, R. C. Sharpley, “Besov spaces on domains in $\mathbb{R}^d$”, Trans. Amer. Math. Soc., 335 (1993), 843–864 | MR | Zbl
[10] Z. Ditzian, “A measure of smoothness related to the Laplacian”, Trans. Amer. Math. Soc., 326:1 (1991), 407–422 | MR | Zbl
[11] Z. Ditzian, V. Hristov, K. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0 p 1$”, Constr. Approx., 11:1 (1995), 67–83 | DOI | MR | Zbl
[12] Z. Ditzian, K. V. Runovski, “Realization and smoothness related to the Laplacian”, Acta. Math. Hungar, 93:3 (2001), 189–223 | DOI | MR | Zbl
[13] E. Gagliardo, “Proprietà di alcune classi di funzioni in più variabili”, Ricerche Mat., 7 (1958), 102–137 | MR | Zbl
[14] D. D. Haroske, H. Triebel, “Some recent developments in the theory of function spaces involving differences”, J. Fixed Point Theory Appl., 13:2 (2013), 341–358 | DOI | MR | Zbl
[15] M. Hovemann, W. Sickel, “Besov-type spaces and differences”, Eurasian Mat. J., 11:1 (2020), 25–56 | DOI | MR | Zbl
[16] V. I. Ivanov, “Direct and inverse theorems of approximation theory in the metrics $L_p$ for $0 p 1$”, Mat. Zametki, 18:5 (1975), 641–658 (in Russian) | MR | Zbl
[17] S. M. Nikol'skii, “Inequalities for entire functions of finite order and their application in the theory of differentiable functions of several variables”, Trudy Mat. Inst. Steklov, 38, 1951, 244–278 (in Russian) | MR | Zbl
[18] S. M. Nikol'skii, Approximation of functions of several variables and embedding theorems, First ed., Nauka, M., 1969 ; Sec. ed., Nauka, M., 1977 (in Russian); English translation: Springer, Berlin, 1975 | MR | Zbl
[19] V. Rukasov, K. Runovski, H.-J. Schmeisser, “On convergence of families of linear polynomial operators”, Func. et Approx, 41 (2009), 41–54 | MR | Zbl
[20] V. Rukasov, K. Runovski, H. J. Schmeisser, “Approximation by families of linear polynomial operators and smoothness properties of functions”, Math. Nachr., 284:11–12 (2011), 1523–1537 | DOI | MR | Zbl
[21] Ross. Akad. Nauk Matem. Sbornik, 184 (1993), 33–42 | MR | Zbl
[22] Ross. Akad. Sci. Matem. Sbornik, 185 (1994), 81–102 | MR | Zbl
[23] K. V. Runovski, Methods of trigonometric approximation, Lambert Academic Publishing, M., 2012 (in Russian)
[24] Mat. Sbornik, 208:2, 70–87 | DOI | MR | Zbl
[25] K. Runovski, I. Rystsov, H.-J. Schmeisser, “Computational aspects of a method of stochastic approximation”, ZAA, 25 (2006), 367–383 | MR | Zbl
[26] K. V. Runovski, H.-J. Schmeisser, “On some extensions of Bernstein inequalities for trigonometric polynomials”, Functiones et Approx., 29 (2001), 125–142 | MR
[27] K. V. Runovski, H.-J. Schmeisser, “Inequalities of Calderon-Zygmund type for trigonometric polynomials”, Georgian Math. J., 8:1 (2001), 165–179 | DOI | MR | Zbl
[28] K. V. Runovski, H.-J. Schmeisser, “On the convergence of Fourier means and interpolation means”, J. Comp. Anal. and Appl., 6:3 (2004), 211–220 | MR
[29] K. V. Runovski, H.-J. Schmeisser, “On approximation methods generated by Bochner-Riesz kernels”, J. Fourier Anal. Appl., 14 (2008), 16–38 | DOI | MR | Zbl
[30] K. V. Runovski, H.-J. Schmeisser, “On convergence of families of linear polynomial operators generated by matrices of multipliers”, Eurasian Math. J., 1:3 (2010), 112–133 | MR | Zbl
[31] K. V. Runovski, H.-J. Schmeisser, “On families of linear polynomial operators generated by Riesz kernels”, Eurasian Math. J., 1:4 (2010), 124–139 | MR | Zbl
[32] K. V. Runovski, H.-J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness. I”, Eurasian Math. J., 2:3 (2011), 98–124 | MR | Zbl
[33] K. V. Runovski, H.-J. Schmeisser, “Smoothness and function spaces generated by homogeneous multipliers”, J. Function Spaces and Applications, Volume, 2012, 643135, 22 pp. | DOI | MR | Zbl
[34] K. V. Runovski, H.-J. Schmeisser et al., “General moduli of smoothness and approximation by families of linear polynomial operators”, New Perspectives on Approximation and Sampling Theory, Festschrift in Honor of Paul Butzer's 85th Birthday, eds. G. Schmeisser et al., Birkhäuser, Basel, 2014, 269–298 | DOI | MR | Zbl
[35] K. V. Runovski, H.-J. Schmeisser, “Moduli of smoothness related to fractional Riesz derivatives”, Journal of Analysis and its Applications, 34 (2015), 109–125 | MR | Zbl
[36] K. V. Runovski, H.-J. Schmeisser, “Moduli of smoothness related to the Laplace operator”, J. Fourier Anal. Appl., 21:3 (2015), 449–471 | DOI | MR | Zbl
[37] H.-J. Schmeisser, “Characterization of function periodic spaces of Besov-Sobolev type via approximation processes and relations to the strong summability of Fourier series”, Approximation and Function spaces, Banach Center Publications, 22, 1989, 341–361 | DOI | MR | Zbl
[38] H.-J. Schmeisser, W. Sickel, “On strong summablility of multiple Fourier series and approximation of periodic functions”, Math. Nachr., 133 (1987), 211–236 | DOI | MR | Zbl
[39] H.-J. Schmeisser, W. Sickel, “Characterization of periodic function spaces via means of Abel-Poisson and Besselpotential type”, J. Approx. Theory, 61 (1990), 239–262 | DOI | MR | Zbl
[40] H.-J. Schmeisser, W. Sickel, “Sampling theory and function spaces”, Applied Mathematics Reviews, v. 1, World Scientific, 2000, 205–284 | DOI | MR | Zbl
[41] H.-J. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, Geest Portig, Leipzig, 1987 | MR | Zbl
[42] C. Schneider, “On dilation operators in Besov spaces”, Rev. Mat. Complutense, 22 (2009), 111–128 | MR | Zbl
[43] W. Sickel, “Periodic spaces and relations to strong summability of multiple Fourier series”, Math. Nachr., 124 (1985), 15–44 | DOI | MR | Zbl
[44] Sb: Mathematics, 1999:9 (2008), 1367–1407 | DOI | DOI | MR | Zbl
[45] W. Sickel, H. Triebel, “Hölder inequalities and sharp embeddings of function spaces of $B^s_{p,q}$ and $F^s_{p,q}$type”, Z. Anal. Anwendungen, 14 (1995), 105–140 | DOI | MR | Zbl
[46] L. N. Slobodeckij, “Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations”, Leningrad Gos. Ped. Inst. Učep. Zap., 197 (1958), 54–112 (in Russian) | MR | Zbl
[47] E. A. Storozhenko, V. Krotov, P. Oswald, “Direct and inverse theorems of Jackson type in the spaces $L_p$, $0 p 1$”, Mat. Sbornik, 98:3 (1975), 395–415 (in Russian) | MR | Zbl
[48] Sibirian Math. Journ., 19 (1978), 630–640 | DOI | MR | Zbl
[49] R. Taberski, “Differences, moduli and derivatives of fractional orders”, Commentat. Math., 19 (1976), 389–400 | MR
[50] S. Yu. Tikhonov, “On moduli of smoothness of fractional order”, Real Anal. Exchange, 30 (2004), 507–518 | DOI | MR
[51] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutsch. Verl. Wissenschaften, Berlin, 1978 | MR
[52] H. Triebel, Theory of function spaces, Geest Portig, Leipzig, 1983 | MR | Zbl
[53] H. Triebel, Theory of function spaces, v. II, Birkhäuser, Basel, 1992 | MR | Zbl
[54] H. Triebel, Theory of function spaces, v. III, Birkhäuser, Basel, 2006 | MR | Zbl
[55] H. Triebel, “Sobolev-Besov spaces of measurable functions”, Studia Math., 201:1 (2010), 69–86 | DOI | MR | Zbl