Asymptotics of solutions of boundary value problems for the equation $\varepsilon y''+xp(x)y'-q(x)y=f$
Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 82-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniform asymptotic expansions of solutions of two-point boundary value problems of Dirichlet, Neumann and Robin for a linear inhomogeneous ordinary differential equation of the second order with a small parameter at the highest derivative are constructed. A feature of the considered two-point boundary value problems is that the corresponding unperturbed boundary value problems for an ordinary differential equation of the first order has a regularly singular point at the left end of the segment. Asymptotic solutions of boundary value problems are constructed by the modified Vishik-Lyusternik-Vasilyeva method of boundary functions. Asymptotic expansions of solutions of two-point boundary value problems are substantiated. We propose a simpler algorithm for constructing an asymptotic solution of bisingular boundary value problems with regular singular points, and our boundary functions constructed in a neighborhood of a regular singular point have the property of "boundary layer", that is, they disappear outside the boundary layer.
@article{EMJ_2022_13_3_a6,
     author = {D. A. Tursunov and K. G. Kozhobekov and Bekmurza uulu Ybadylla},
     title = {Asymptotics of solutions of boundary value problems for the equation $\varepsilon y''+xp(x)y'-q(x)y=f$},
     journal = {Eurasian mathematical journal},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a6/}
}
TY  - JOUR
AU  - D. A. Tursunov
AU  - K. G. Kozhobekov
AU  - Bekmurza uulu Ybadylla
TI  - Asymptotics of solutions of boundary value problems for the equation $\varepsilon y''+xp(x)y'-q(x)y=f$
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 82
EP  - 91
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a6/
LA  - en
ID  - EMJ_2022_13_3_a6
ER  - 
%0 Journal Article
%A D. A. Tursunov
%A K. G. Kozhobekov
%A Bekmurza uulu Ybadylla
%T Asymptotics of solutions of boundary value problems for the equation $\varepsilon y''+xp(x)y'-q(x)y=f$
%J Eurasian mathematical journal
%D 2022
%P 82-91
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a6/
%G en
%F EMJ_2022_13_3_a6
D. A. Tursunov; K. G. Kozhobekov; Bekmurza uulu Ybadylla. Asymptotics of solutions of boundary value problems for the equation $\varepsilon y''+xp(x)y'-q(x)y=f$. Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 82-91. http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a6/

[1] K. Alymkulov, D. A. Tursunov, B. A. Azimov, “Generalized method of boundary layer function for bisingularly perturbed differential Cole equation”, Far East Journal of Mathematical Sciences, 101:3 (2017), 3507–516

[2] K. Alymkulov, T. D. Asylbekov, S. F. Dolbeeva, “Generalization of the boundary function method for solving boundary-value problems for bisingularly perturbed second-order differential equations”, Mathematical Notes, 94:3 (2013), 451–454 | DOI | MR | Zbl

[3] K. Alymkulov, A. Z. Zulpukarov, “Uniform approximation of the solution of the boundary value problem of a singularly perturbed second-order equation in the case when the unperturbed equation has a regular singular point”, Issled. po int. diff. uravneniyam, 33, Ilim, Bishkek, 2004, 118–123 | MR

[4] Z. Cen, A. Xu, A. Le, L. B. Liu, “A uniformly convergent hybrid difference scheme for a system of singularly perturbed initial value problems”, International Journal of Computer Mathematics, 97:5 (2020), 1058–1086 | DOI | MR | Zbl

[5] H. Chen, G. Zou, “Discussion on the applicability of static asymptotic solutions in dynamic fracture”, Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 41:6 (2020), 824–831

[6] A. M. Il'in, A. R. Danilin, Asymptotic methods in analysis, Fizmatlit, M., 2009 | Zbl

[7] V. Kachalov, “Differential equations with a small parameter in a Banach space”, Understanding Banach Spaces, 2019, 415–428

[8] T. Sh. Kalmenov, A. K. Les, U. A. Iskakova, “Determination of density of elliptic potential”, Eurasian Math. J., 12:4 (2021), 43–52 | DOI | MR | Zbl

[9] K. G. Kozhobekov, U. Z. Erkebaev, D. A. Tursunov, “Asymptotics of the solution to the boundary-value problems when limited equation has singular point”, Lobachevskii Journal of Mathematics, 41:1 (2020), 96–101 | DOI | MR | Zbl

[10] K. G. Kozhobekov, D. A. Tursunov, “Asymptotics of the solution to the boundary-value problem when the limit equation has an irregular singular point”, Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki, 29:3 (2019), 332–340 | DOI | MR | Zbl

[11] D. Kumar, P. Kumari, “Parameter-uniform numerical treatment of singularly perturbed initial-boundary value problems with large delay”, Applied Numerical Mathematics, 153 (2020), 412–429 | DOI | MR | Zbl

[12] C. S. Liu, B. Li, “Solving second-order singularly perturbed ODE by the collocation method based on energetic Robin boundary functions”, Applications of Mathematics, 64:6 (2019), 679–693 | DOI | MR | Zbl

[13] V. Nikishkin, “On the asymptotics of the solution of the Dirichlet problem for a fourth-order equation in a layer”, Computational Mathematics and Mathematical Physics, 54 (2014), 1214–1220 | DOI | MR | Zbl

[14] N. T. Orumbayeva, A. T. Assanova, A. B. Keldibekova, “On an algorithm of nding an approximate solution of a periodic problem for a third-order differential equation”, Eurasian Math. J., 13:1 (2022), 69–85 | DOI | MR | Zbl

[15] A. Puvaneswari, A. R. Babu, T. Valanarasu, “Cubic spline scheme on variable mesh for singularly perturbed periodical boundary value problem”, Novi Sad Journal of Mathematics, 50:1 (2020), 157–172 | MR | Zbl

[16] J. Schutz, D. C. Seal, “An asymptotic preserving semi-implicit multiderivative solver”, Applied Numerical Mathematics, 160 (2021), 84–101 | DOI | MR | Zbl

[17] D. A. Tursunov, Bekmurza uulu Ybadylla, “Asymptotic solution of the Robin problem with a regularly singular point”, Lobachevskii Journal of Mathematics, 42:3 (2021), 613–620 | DOI | MR | Zbl

[18] D. A. Tursunov, “The asymptotic solution of the three-band bisingularly problem”, Lobachevskii Journal of Mathematics, 38:3 (2017), 542–546 | DOI | MR | Zbl

[19] D. A. Tursunov, “Asymptotics of the Cauchy problem solution in the case of instability of a stationary point in the plane of rapid motions”, Vestnik Tomskogo Gosudarstvennogo Universiteta, Matematika i Mekhanika, 54:54 (2018), 46–57 | DOI | MR | Zbl

[20] D. A. Tursunov, “Asymptotic solution of linear bisingular problems with additional boundary layer”, Russian Mathematics, 62:3 (2018), 60–67 | DOI | MR | Zbl

[21] D. A. Tursunov, “The asymptotic solution of the bisingular Robin problem”, Sib. Electron. Math. Rep., 14 (2017), 10–21 | MR | Zbl

[22] M. B. Vira, “Asymptotics of the solutions of boundary-value problems for linear singularly perturbed systems of differential equations in the case of multiple spectrum of the boundary matrix”, J Math Sci., 246 (2020), 303–316 | DOI | MR | Zbl