Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_2_a1, author = {A. Benkhaled and A. Hamdaoui and M. Terbeche}, title = {Minimax shrinkage estimators and estimators dominating the {James-Stein} estimator under the balanced loss function}, journal = {Eurasian mathematical journal}, pages = {18--36}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a1/} }
TY - JOUR AU - A. Benkhaled AU - A. Hamdaoui AU - M. Terbeche TI - Minimax shrinkage estimators and estimators dominating the James-Stein estimator under the balanced loss function JO - Eurasian mathematical journal PY - 2022 SP - 18 EP - 36 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a1/ LA - en ID - EMJ_2022_13_2_a1 ER -
%0 Journal Article %A A. Benkhaled %A A. Hamdaoui %A M. Terbeche %T Minimax shrinkage estimators and estimators dominating the James-Stein estimator under the balanced loss function %J Eurasian mathematical journal %D 2022 %P 18-36 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a1/ %G en %F EMJ_2022_13_2_a1
A. Benkhaled; A. Hamdaoui; M. Terbeche. Minimax shrinkage estimators and estimators dominating the James-Stein estimator under the balanced loss function. Eurasian mathematical journal, Tome 13 (2022) no. 2, pp. 18-36. http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a1/
[1] F. Arnold Steven, The theory of linear models and multivariate analysis, John Wiley and Sons, Inc, 1981, 9–10 | MR
[2] A. Benkhaled, A. Hamdaoui, “General classes of shrinkage estimators for the multivariate normal mean with unknown variancee: Minimaxity and limit of risks ratios”, Kragujevac J. Math., 46 (2019), 193–213 | DOI | MR
[3] J. O. Berger, W. E. Strawderman, “Choice of hierarchical priors: Admissibility in estimation of normal means”, Ann. Statist., 24 (1996), 931–951 | DOI | MR | Zbl
[4] L. D. Brown, “In-season prediction of batting averages: A eld test of empirical Bayes and Bayes methodologies”, Ann. Appl. Stat., 2 (2008), 113–152 | DOI | MR | Zbl
[5] B. Efron, C. N. Morris, “Data analysis using Stein's estimator and its generalizations”, J. Amer. Statist. Assoc., 70 (1975), 311–319 | DOI | Zbl
[6] B. Efron, C. N. Morris, “Stein's estimation rule and its competitors: An empirical Bayes approach”, J. Amer. Statist. Assoc., 68 (1973), 117–130 | MR | Zbl
[7] B. Everitt, T. Hothorn, An introduction to applied multivariate analysis with R, Springer, New York, 2011 | MR | Zbl
[8] H. Guikai, L. Qingguo, Y. Shenghua, “Risk comparison of improved estimators in a linear regression model with multivariate errors under balanced loss function”, Journal of Applied Mathematics, 354 (2014), 1–7 | MR
[9] A. Hamdaoui, A. Benkhaled, N. Mezouar, “Minimaxity and limits of risks ratios of shrinkage estimators of a multivariate normal mean in the bayesian case”, Stat., Optim. Inf. Comput., 8 (2020), 507–520 | DOI | MR
[10] M. Jafari Jozani, A. Leblan, E. Marchand, “On continuous distribution functions, minimax and best invariant estimators and integrated balanced loss functions”, Canad. J. Statistist., 42 (2014), 470–486 | DOI | MR | Zbl
[11] W. James, C. Stein, “Estimation with quadratic loss”, Proc 4th Berkeley Symp. Math. Statist. Prob., v. 1, Univ of California Press, Berkeley, 1961, 361–379 | MR
[12] H. Karamikabir, M. Afsahri, “Generalized Bayesian shrinkage and wavelet estimation of location parameter for spherical distribution under balanced-type loss: Minimaxity and admissibility”, J. Multivariate Anal., 177 (2020), 110–120 | DOI | MR
[13] H. Karamikabir, M. Afsahri, M. Arashi, “Shrinkage estimation of non-negative mean vector with unknown covariance under balance loss”, J. Inequal. Appl., 2018, 1–11 | MR
[14] E. Marchand, W. E. Strawderman, “Bayes minimax estimation of the mean matrix of matrix-variate normal distribution under balanced loss function”, Statist. Probap. Lett., 175 (2017), 110–120
[15] N. Sanjari Farsipour, A. Asgharzadeh, “Estimation of a normal mean relative to balanced loss functions”, Statist. Papers, 45 (2004), 279–286 | DOI | MR | Zbl
[16] K. Selahattin, D. Issam, “The optimal extended balanced loss function estimators”, J. Comput. Appl. Math., 345 (2019), 86–98 | DOI | MR | Zbl
[17] C. Stein, “Estimation of the mean of a multivariate normal distribution”, Ann. Statist., 9 (1981), 1135–1151 | DOI | MR | Zbl
[18] C. Stein, “Inadmissibilty of the usual estimator for the mean of a multivariate normal distribution”, Proc 3th Berkeley Symp. Math. Statist. Prob., v. 1, Univ. of California Press, Berkeley, 1956, 197–206 | MR
[19] H. Tsukuma, T. Kubukaza, “Estimation of the mean vector in a singular multivariate normal distribution”, J. Multivariate Anal., 140 (2015), 245–258 | DOI | MR | Zbl
[20] X. Xie, S. C. Kou, L. Brown, “Optimal shrinkage estimators of mean parameters in family of distribution with quadratic variance”, Ann. Statist., 44 (2016), 564–597 | DOI | MR | Zbl
[21] R. Yang, J. O. Berger, “Estimation of a covariance matrix using the reference prior”, Ann. Statist., 22 (1994), 1195–1211 | DOI | MR | Zbl
[22] A. Zellner, “Bayesian and non-Bayesian estimation using balanced loss functions”, Statistical Decision Theory and Methods, v. V, eds. Berger J.O., Gupta S.S., Springer, New York, 1994, 337–390 | MR
[23] S. Zinodiny, S. Leblan, S. Nadarajah, “Bayes minimax estimation of the mean matrix of matrix-variate normal distribution under balanced loss function”, Statist. Probab. Lett., 125 (2017), 110–120 | DOI | MR | Zbl