Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_1_a6, author = {Zh. A. Sartabanov and G. M. Aitenova and G. A. Abdikalikova}, title = {Multiperiodic solutions of quasilinear systems of integro-differential equations with $D_c$-operator and $\epsilon$-period of hereditarity}, journal = {Eurasian mathematical journal}, pages = {86--100}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a6/} }
TY - JOUR AU - Zh. A. Sartabanov AU - G. M. Aitenova AU - G. A. Abdikalikova TI - Multiperiodic solutions of quasilinear systems of integro-differential equations with $D_c$-operator and $\epsilon$-period of hereditarity JO - Eurasian mathematical journal PY - 2022 SP - 86 EP - 100 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a6/ LA - en ID - EMJ_2022_13_1_a6 ER -
%0 Journal Article %A Zh. A. Sartabanov %A G. M. Aitenova %A G. A. Abdikalikova %T Multiperiodic solutions of quasilinear systems of integro-differential equations with $D_c$-operator and $\epsilon$-period of hereditarity %J Eurasian mathematical journal %D 2022 %P 86-100 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a6/ %G en %F EMJ_2022_13_1_a6
Zh. A. Sartabanov; G. M. Aitenova; G. A. Abdikalikova. Multiperiodic solutions of quasilinear systems of integro-differential equations with $D_c$-operator and $\epsilon$-period of hereditarity. Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 86-100. http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a6/
[1] G. A. Abdikalikova, “Construction of an almost periodic solution of one quasilinear parabolic system”, Izv. MON NAN RK. Ser. fiz. mat., 2001, no. 3, 3–8
[2] A. T. Assanova, Z. S. Tokmurzin, “A nonlocal multipoint problem for a system of fourth-order partial differential equations”, Eurasian Mathematical Journal, 11:3 (2020), 3–20
[3] E. A. Barbashin, Introduction to sustainability theory, Nauka, M., 1967 (in Russian)
[4] A. B. Berzhanov, E. K. Kurmangaliyev, “Solution of a countable system of quasilinear partial differential equations multiperiodic in a part of variables”, Ukrainian Mathematical Journal, 61:2 (2009), 336–345 | DOI
[5] R. N. Butris, “Periodic solution of nonlinear system of integro-differential equation depending on the Gamma distribution”, Gen. Math. Notes, 15:1 (2013), 56–71
[6] Y. V. Bykov, On some problems of the theory of integro-differential equations, Kirgiz. Gos. un-t, Frunze, 1957 (in Russian)
[7] K.-S. Chiu, “Periodic solutions for nonlinear integro-differential systems with piecewise constant argument”, The Scientific World Journal, 2014
[8] D. S. Dzhumabaev, S. T. Mynbayeva, “New general solution to a nonlinear Fredholm integro-differential equation”, Eurasian Mathematical Journal, 10:4 (2019), 24–33
[9] A. A. Ilyushin, B. E. Pobedria, Fundamentals of the mathematical theory of thermovisco-elasticity, Nauka, M., 1970 (in Russian)
[10] M. I. Imanaliev, Nonlinear partial integro-differential equations, Ilim, Bishkek, 1992 (in Russian)
[11] V. Kh. Kharasakhal, Almost periodic solutions of ordinary differential equations, Nauka, Alma-Ata, 1970 (in Russian)
[12] A. A. Kulzhumiyeva, Zh. A. Sartabanov, “On multiperiodic integrals of a linear system with the differentiation operator in the direction of the main diagonal in the space of independent variables”, Eurasian Mathematical Journal, 8:1 (2017), 67–75
[13] A. A. Kulzhumiyeva, Zh. A. Sartabanov, “Integration of a linear equation with differential operator, corresponding to the main diagonal in the space of independent variables, and coefficients, constant on the diagonal”, Russian Mathematics, 63:6 (2019), 29–41
[14] V. Lakshmikantham, R. Mohana Rao, Theory of integro-differential equations, Gordon and Breach Science Publishers, Amsterdam, 1995
[15] A. M. Nakhushev, Equations of mathematical biology, Vysshaia shkola, M., 1995 (in Russian)
[16] B. Zh. Omarova, Zh. A. Sartabanov, “On multiperiodic solutions of perturbed nonlinear autonomous systems with the differentiation operator on a vector field”, Eurasian Mathematical Journal, 12:1 (2021), 68–81
[17] Yu. N. Rabotnov, Elements of hereditary mechanics of solids, Nauka, M., 1977 (in Russian)
[18] X. Ros Oton, Integro-differential equations: Regularity theory and Pohozaev identities, Universitat Politecnica de Catalunya Programa de Doctorat de Matematica Aplicada, Barcelona, 2014
[19] A. M. Samoilenko, N. I. Ronto, Numerical and analytical methods for studying solutions of boundary value problems, Naukova Dumka, Kiev, 1995 (in Russian)
[20] Zh. Sartabanov, “Pseudoperiodic solutions of a system of integrodifferential equations”, Ukrainian Mathematical Journal, 41:1 (1989), 116–120
[21] Zh. A. Sartabanov, “The multiperiodic solutions of a linear system of equations with the operator of differentiation along the main diagonal of the space of independent variables and delayed arguments”, AIP Conference Proceedings, 1880 (2017), 040020, 5 pp.
[22] V. S. Sergeev, “Forced extremely periodic motions in systems with aftereffect described by integro-differential equations of Volterra type”, Trudy MFTI, 9:3 (2017), 57–65
[23] D. U. Umbetzhanov, Almost periodic solutions of evolutionary equations, Nauka, Alma-Ata, 1990 (in Russian)
[24] V. Volterra, Lecons sur les equations integrals et les equations integro-differentielles, Paris, 1913
[25] V. Volterra, “Vibrazione elastiche nel caso della eredita”, Rend. Accad. Lincei, 5:21 (1912), 3–12
[26] V. Volterra, “Sur les equations integro differentielles et leurs applications”, Acta Math., 35 (1912), 295–356
[27] V. Volterra, Theory of functionals, integral and integro-differential equations, Nauka, M., 1982 (in Russian)