On an algorithm of finding an approximate solution of a periodic problem for a third-order differential equation
Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 69-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a periodic boundary value problem for a partial differential equation of the third order. An algorithm for finding a solution to this boundary value problem is proposed, and sufficient conditions for the convergence of the proposed algorithm are obtained.
@article{EMJ_2022_13_1_a5,
     author = {N. T. Orumbayeva and A. T. Assanova and A. B. Keldibekova},
     title = {On an algorithm of finding an approximate solution of a periodic problem for a third-order differential equation},
     journal = {Eurasian mathematical journal},
     pages = {69--85},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a5/}
}
TY  - JOUR
AU  - N. T. Orumbayeva
AU  - A. T. Assanova
AU  - A. B. Keldibekova
TI  - On an algorithm of finding an approximate solution of a periodic problem for a third-order differential equation
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 69
EP  - 85
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a5/
LA  - en
ID  - EMJ_2022_13_1_a5
ER  - 
%0 Journal Article
%A N. T. Orumbayeva
%A A. T. Assanova
%A A. B. Keldibekova
%T On an algorithm of finding an approximate solution of a periodic problem for a third-order differential equation
%J Eurasian mathematical journal
%D 2022
%P 69-85
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a5/
%G en
%F EMJ_2022_13_1_a5
N. T. Orumbayeva; A. T. Assanova; A. B. Keldibekova. On an algorithm of finding an approximate solution of a periodic problem for a third-order differential equation. Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 69-85. http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a5/

[1] A. T. Assanova, A. E. Imanchiev, “Solvability of multipoint-integral boundary value problem for a third-order differential equation and parametrization method”, Springer Proceedings in Mathematics and Statistics, 216 (2017), 113–122 | DOI

[2] A. T. Assanova, N. B. Iskakova, N. T. Orumbayeva, “On the well-posedness of periodic problems for the system of hyperbolic equations with finite time delay”, Mathematical Methods in the Applied Sciences, 43:2 (2020), 881–902 | DOI

[3] A. T. Assanova, Z. S. Tokmurzin, “A nonlocal multipoint problem for a system of fourth-order partial differential equations”, Eurasian Math. J., 11:3 (2020), 3–20 | DOI

[4] D. S. Dzhumabaev, S. T. Mynbayeva, “New general solution to a nonlinear Fredholm integro-differential equation”, Eurasian Math. J., 10:4 (2019), 24–33 | DOI

[5] Zh. B. Eskabylova, K. N. Ospanov, T. N. Bekjan, “The solvability results for the third-order singular non-linear differential equation”, Eurasian Math. J., 10:4 (2019), 85–91 | DOI

[6] T. Kiguradze, V. Lakshmikantham, “On initial-boundary value problems in bounded and unbounded domains for a class of nonlinear hyperbolic equations of the third order”, Journal of Mathematical Analysis and Applications, 324:8 (2006), 1242–1261 | DOI

[7] A. I. Kozhanov, G. A. Lukina, “Pseudoparabolic and pseudohyperbolic equations in noncylindrical time domains”, Math. Notes North-Eastern Federal University, 26:3 (2019), 15–30 | DOI

[8] N. T. Orumbayeva, A. B. Keldibekova, “On One Solution of a Periodic Boundary-Value Problem for a Third-Order Pseudoparabolic Equation”, Lobachevskii Journal of Mathematics, 41, 1864–1872 | DOI

[9] N. T. Orumbayeva, “On solvability of non-linear semi-periodic boundary-value problem for system of hyperbolic equations”, Russian Mathematics (Iz. VUZ), 9 (2016), 26–41 | DOI

[10] N. T. Orumbayeva, B. K. Shayakhmetova, “On a method of finding a solution of semi-periodic boundary value problem for hyperbolic equations”, AIP Conference Proceedings, 1759 (2016), 020121 | DOI

[11] K. N. Ospanov, Zh. B. Eskabylova, D. R. Beisenova, “Maximal regularity estimates for a higher order differential equation with the fluctuating coefficients”, Eurasian Math. J., 10:2 (2019), 65–74 | DOI

[12] C. Tunc, “Stability and boundedness in differential systems of third order with variable delay”, Proyecciones. Journal of Mathematics, 35:3 (2017), 317–338 | DOI