On properties of functions invertible in the sense of Ehrenpreis in the Schwartz algebra
Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 9-18

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider those elements of the Schwartz algebra of entire functions which are the Fourier-Laplace transforms of invertible distributions with compact supports on the real line. These functions are called invertible in the sense of Ehrenpreis. The first of the presented results is about the properties of zero subsets of invertible in the sense of Ehrenpreis function $f$. Namely, we establish some properties of the zero subset formed by zeros of $f$ laying not far from the real axis. We also obtain estimates from below for $|f|$ which generalize the corresponding ones in the definition of the notion of sine-type functions.
@article{EMJ_2022_13_1_a1,
     author = {N. F. Abuzyarova},
     title = {On properties of functions invertible in the sense of {Ehrenpreis} in the {Schwartz} algebra},
     journal = {Eurasian mathematical journal},
     pages = {9--18},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a1/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - On properties of functions invertible in the sense of Ehrenpreis in the Schwartz algebra
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 9
EP  - 18
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a1/
LA  - en
ID  - EMJ_2022_13_1_a1
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T On properties of functions invertible in the sense of Ehrenpreis in the Schwartz algebra
%J Eurasian mathematical journal
%D 2022
%P 9-18
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a1/
%G en
%F EMJ_2022_13_1_a1
N. F. Abuzyarova. On properties of functions invertible in the sense of Ehrenpreis in the Schwartz algebra. Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 9-18. http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a1/