Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_4_a7, author = {V. I. Burenkov and M. A. Senouci}, title = {Boundedness of the generalized {Riesz} potential in local {Morrey} type spaces}, journal = {Eurasian mathematical journal}, pages = {92--98}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a7/} }
TY - JOUR AU - V. I. Burenkov AU - M. A. Senouci TI - Boundedness of the generalized Riesz potential in local Morrey type spaces JO - Eurasian mathematical journal PY - 2021 SP - 92 EP - 98 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a7/ LA - en ID - EMJ_2021_12_4_a7 ER -
V. I. Burenkov; M. A. Senouci. Boundedness of the generalized Riesz potential in local Morrey type spaces. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 92-98. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a7/
[1] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Studia Math., 163:2 (2004), 157–176
[2] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces”, J. Comput. Appl. Math., 208 (2007), 280–301
[3] V. I. Burenkov, P. Jain, T. V. Tararykova, “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Mathematical Journal, 2:1 (2011), 52–80
[4] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Ch. Mustafayev, “Boundedness of the Riesz potential in local Morrey-type spaces”, Potential Analysis, 35:1 (2011), 67–87
[5] V. I. Burenkov, V. S. Guliyev, T. V. Tararykova, “Comparison of Morrey spaces and Nikol'skii spaces”, Eurasian Math. J., 12:1 (2021), 9–20
[6] V. I. Burenkov, E. D. Nursultanov, “Interpolation theorems for Urysohn integral operators”, Eurasian Math. J., 11:4 (2020), 88–94
[7] M. Carro, L. Pick, J. Soria, V. D. Stepanov, “On embeddings between classical Lorentz spaces”, Math. Ineq. Appl., 4:3 (2001), 397–428
[8] M. Carro, A. Gogatishvili, J. Martin, L. Pick, “Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces”, J. Oper. Theory, 59:2 (2008), 309–332
[9] M. L. Goldman, Hardy type inequalities on the cone of quasimonotone functions, Computer Center Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, 1998, 1–69