Boundedness of the generalized Riesz potential in local Morrey type spaces
Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 92-98

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the results obtained in [4] on the boundedness of the Riesz potential from one general local Morrey-type space to another one to the case of the generalized Riesz potential.
@article{EMJ_2021_12_4_a7,
     author = {V. I. Burenkov and M. A. Senouci},
     title = {Boundedness of the generalized {Riesz} potential in local {Morrey} type spaces},
     journal = {Eurasian mathematical journal},
     pages = {92--98},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a7/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - M. A. Senouci
TI  - Boundedness of the generalized Riesz potential in local Morrey type spaces
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 92
EP  - 98
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a7/
LA  - en
ID  - EMJ_2021_12_4_a7
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A M. A. Senouci
%T Boundedness of the generalized Riesz potential in local Morrey type spaces
%J Eurasian mathematical journal
%D 2021
%P 92-98
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a7/
%G en
%F EMJ_2021_12_4_a7
V. I. Burenkov; M. A. Senouci. Boundedness of the generalized Riesz potential in local Morrey type spaces. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 92-98. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a7/