On the inequality of different metrics for multiple Fourier--Haar series
Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 90-93

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $1$, $f\in L_p[0, 1]$. Then, according to the inequality of different metrics due to S.M. Nikol'skii, for the sequence of norms of partial sums of the Fourier–Haar series $\{||S_{2^k}(f)||_{L_q}\}_{k=0}^\infty$ the following relation is true $||S_{2^k}(f)||_{L_q}=O\left(2^{k\left(\frac1p-\frac1q\right)}\right)$. In this paper, we study the asymptotic behavior of partial sums in the Lorentz spaces. In particular, it is obtained that $||S_{2^{k_1}2^{k_2}}(f)||_{L_{\overline{q}}}=o\left(2^{k_1\left(\frac1{p_1}-\frac1{q_1}\right)+k_2\left(\frac1{p_2}-\frac1{q_2}\right)}\right)$ for $f\in L_{\overline{p},\overline{\tau}}[0, 1]^2$.
@article{EMJ_2021_12_3_a8,
     author = {A. N. Bashirova and E. D. Nursultanov},
     title = {On the inequality of different metrics for multiple {Fourier--Haar} series},
     journal = {Eurasian mathematical journal},
     pages = {90--93},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/}
}
TY  - JOUR
AU  - A. N. Bashirova
AU  - E. D. Nursultanov
TI  - On the inequality of different metrics for multiple Fourier--Haar series
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 90
EP  - 93
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/
LA  - en
ID  - EMJ_2021_12_3_a8
ER  - 
%0 Journal Article
%A A. N. Bashirova
%A E. D. Nursultanov
%T On the inequality of different metrics for multiple Fourier--Haar series
%J Eurasian mathematical journal
%D 2021
%P 90-93
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/
%G en
%F EMJ_2021_12_3_a8
A. N. Bashirova; E. D. Nursultanov. On the inequality of different metrics for multiple Fourier--Haar series. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 90-93. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/