On the inequality of different metrics for multiple Fourier--Haar series
Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 90-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $1$, $f\in L_p[0, 1]$. Then, according to the inequality of different metrics due to S.M. Nikol'skii, for the sequence of norms of partial sums of the Fourier–Haar series $\{||S_{2^k}(f)||_{L_q}\}_{k=0}^\infty$ the following relation is true $||S_{2^k}(f)||_{L_q}=O\left(2^{k\left(\frac1p-\frac1q\right)}\right)$. In this paper, we study the asymptotic behavior of partial sums in the Lorentz spaces. In particular, it is obtained that $||S_{2^{k_1}2^{k_2}}(f)||_{L_{\overline{q}}}=o\left(2^{k_1\left(\frac1{p_1}-\frac1{q_1}\right)+k_2\left(\frac1{p_2}-\frac1{q_2}\right)}\right)$ for $f\in L_{\overline{p},\overline{\tau}}[0, 1]^2$.
@article{EMJ_2021_12_3_a8,
     author = {A. N. Bashirova and E. D. Nursultanov},
     title = {On the inequality of different metrics for multiple {Fourier--Haar} series},
     journal = {Eurasian mathematical journal},
     pages = {90--93},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/}
}
TY  - JOUR
AU  - A. N. Bashirova
AU  - E. D. Nursultanov
TI  - On the inequality of different metrics for multiple Fourier--Haar series
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 90
EP  - 93
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/
LA  - en
ID  - EMJ_2021_12_3_a8
ER  - 
%0 Journal Article
%A A. N. Bashirova
%A E. D. Nursultanov
%T On the inequality of different metrics for multiple Fourier--Haar series
%J Eurasian mathematical journal
%D 2021
%P 90-93
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/
%G en
%F EMJ_2021_12_3_a8
A. N. Bashirova; E. D. Nursultanov. On the inequality of different metrics for multiple Fourier--Haar series. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 90-93. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/

[1] K. A. Bekmaganbetov, E. D. Nursultanov, “On interpolation and embedding theorems for the spaces $\mathfrak{B}_{pr}^{\sigma q}(\Omega)$”, Math. Notes, 84 (2008), 733–736 (in Russian) | DOI | Zbl

[2] K. A. Bekmaganbetov, E. D. Nursultanov, “Interpolation of Besov $B_{pr}^{\sigma q}$ and Lizorkin-Triebel $F_{pr}^{\sigma q}$ spaces”, Analysis Mathematica, 35 (2009), 169–188 | DOI | Zbl

[3] K. A. Bekmaganbetov, Y. Toleugazy, “On the order of the trigonometric diameter of the anisotropic Nikolskii-Besov class in the metric of anisotropic Lorentz spaces”, Analysis Mathematica, 45:2 (2019), 237–247 | DOI | Zbl

[4] J. Bergh, J. Löfström, Interpolation spaces: an introduction, Springer Verlag, Berlin, 1976 | Zbl

[5] V. I. Burenkov, E. D. Nursultanov, “Interpolation theorems for nonlinear urysohn integral operators in general Morrey-type spaces”, Eurasian Math. J., 11:4 (2020), 87–94 | DOI | Zbl

[6] V. I. Burenkov, D. K. Chigambayeva, E. D. Nursultanov, “Marcinkiewicz-type interpolation theorem and estimates for convolutions for Morrey-type spaces”, Eurasian Math. J., 9:2 (2018), 82–88 | DOI | Zbl

[7] Am. Math. Soc. Transl., Ser. 2, 80 (1969), 1–38 | Zbl

[8] E. D. Nursultanov, “Interpolation theorems for anisotropic function spaces and their applications”, Doklady of the Russian Academy of Sciences, 394:1 (2004), 22–25 (in Russian) | Zbl

[9] E. D. Nursultanov, “Nikol'skii's inequality for di erent metrics and properties of the sequence of norms of the Fourier sums of a function in the Lorentz space”, Proc. Steklov Inst. Math., 255 (2006), 1–18 | DOI

[10] E. Nursultanov, L. Sarybekova, N. Tleukhanova, “Some new Fourier multiplier results of Lizorkin and Hormander types”, Functional Analysis in Interdisciplinary Applications, Springer Proc. Math. Stat., 216, Springer, Cham, 2017, 58–82 | Zbl

[11] L-E. Persson, L. Sarybekova, N. Tleukhanova, “A Lizorkin theorem on Fourier series multipliers for strong regular systems”, Analysis for Science, Engineering and Beyond, Springer Proc. Math., 6, Springer, Heidelberg, 2012, 305–317 | DOI | Zbl

[12] L. O. Sarybekova, T. V. Tararykova, N. T. Tleukhanova, “On a generalization of the Lizorkin theorem on Fourier multipliers”, Math. Inequal. Appl., 13:3 (2010), 613–624 | Zbl

[13] J. Schauder, “Eine Eigenschaft des Haarschen orthogonale Systeme”, Math. Z., 28 (1928), 317–320 | DOI | Zbl

[14] N. T. Tleukhanova, K. K. Sadykova, “O'Neil-type inequalities for convolutions in anisotropic Lorentz spaces”, Eurasian Math. J., 10:3 (2019), 68–83 | DOI | Zbl