On the inequality of different metrics for multiple Fourier--Haar series
Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 90-93
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $1$, $f\in L_p[0, 1]$. Then, according to the inequality of different metrics due to S.M. Nikol'skii, for the sequence of norms of partial sums of the Fourier–Haar series $\{||S_{2^k}(f)||_{L_q}\}_{k=0}^\infty$ the following relation is true $||S_{2^k}(f)||_{L_q}=O\left(2^{k\left(\frac1p-\frac1q\right)}\right)$. In this paper, we study the asymptotic behavior of partial sums in the Lorentz spaces. In particular, it is obtained that $||S_{2^{k_1}2^{k_2}}(f)||_{L_{\overline{q}}}=o\left(2^{k_1\left(\frac1{p_1}-\frac1{q_1}\right)+k_2\left(\frac1{p_2}-\frac1{q_2}\right)}\right)$ for $f\in L_{\overline{p},\overline{\tau}}[0, 1]^2$.
@article{EMJ_2021_12_3_a8,
author = {A. N. Bashirova and E. D. Nursultanov},
title = {On the inequality of different metrics for multiple {Fourier--Haar} series},
journal = {Eurasian mathematical journal},
pages = {90--93},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/}
}
TY - JOUR AU - A. N. Bashirova AU - E. D. Nursultanov TI - On the inequality of different metrics for multiple Fourier--Haar series JO - Eurasian mathematical journal PY - 2021 SP - 90 EP - 93 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/ LA - en ID - EMJ_2021_12_3_a8 ER -
A. N. Bashirova; E. D. Nursultanov. On the inequality of different metrics for multiple Fourier--Haar series. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 90-93. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a8/