Sharp conformally invariant Hardy-type inequalities with remainders
Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 46-56

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we establish new Hardy-Maz'ya-type inequalities with remainders for all continuously differentiable functions with compact support in the half space $\mathbb{R}_+^n$. The weight functions depend on the distance to the boundary or on the distance to the origin. Also new sharp Avkhadiev-Hardy-type inequalities involving the distance to the boundary or the hyperbolic radius are proved. We consider Avkhadiev-Hardy-type inequalities in simply and doubly connected plain domains and in tube-domains.
@article{EMJ_2021_12_3_a5,
     author = {R. G. Nasibullin},
     title = {Sharp conformally invariant {Hardy-type} inequalities with remainders},
     journal = {Eurasian mathematical journal},
     pages = {46--56},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a5/}
}
TY  - JOUR
AU  - R. G. Nasibullin
TI  - Sharp conformally invariant Hardy-type inequalities with remainders
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 46
EP  - 56
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a5/
LA  - en
ID  - EMJ_2021_12_3_a5
ER  - 
%0 Journal Article
%A R. G. Nasibullin
%T Sharp conformally invariant Hardy-type inequalities with remainders
%J Eurasian mathematical journal
%D 2021
%P 46-56
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a5/
%G en
%F EMJ_2021_12_3_a5
R. G. Nasibullin. Sharp conformally invariant Hardy-type inequalities with remainders. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 46-56. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a5/