The functor of idempotent probability measures and maps with uniformity properties of uniform spaces
Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 29-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we established that the functor of idempotent probability measures with a compact support transforms open maps into open maps and preserves the weight and the completeness index of uniform spaces. Consequently, the space of idempotent probability measures with a compact support is a locally compact Hausdorff space if and only if the original space is such.
@article{EMJ_2021_12_3_a3,
     author = {A. A. Borubaev and D. T. Eshkobilova},
     title = {The functor of idempotent probability measures and maps with uniformity properties of uniform spaces},
     journal = {Eurasian mathematical journal},
     pages = {29--41},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a3/}
}
TY  - JOUR
AU  - A. A. Borubaev
AU  - D. T. Eshkobilova
TI  - The functor of idempotent probability measures and maps with uniformity properties of uniform spaces
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 29
EP  - 41
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a3/
LA  - en
ID  - EMJ_2021_12_3_a3
ER  - 
%0 Journal Article
%A A. A. Borubaev
%A D. T. Eshkobilova
%T The functor of idempotent probability measures and maps with uniformity properties of uniform spaces
%J Eurasian mathematical journal
%D 2021
%P 29-41
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a3/
%G en
%F EMJ_2021_12_3_a3
A. A. Borubaev; D. T. Eshkobilova. The functor of idempotent probability measures and maps with uniformity properties of uniform spaces. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 29-41. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a3/

[1] M. Akian, “Densities of idempotent measures and large deviations”, Trans. Amer. Math. Soc., 351 (1999), 4515–4543 | DOI | Zbl

[2] S. Albeverio, Sh. A. Ayupov, A. A. Zaitov, “On certain properties of the spaces of order-preserving functionals”, Topology and its Applications, 155:16 (2008), 1792–1799 | DOI | Zbl

[3] A. A. Borubaev, “On some generalizations of metric, normed, and unitary spaces”, Topology and its Applications, 201 (2016), 344–349 | DOI | Zbl

[4] A. A. Borubaev, P. S. Pankov, A. A. Chekeev, Spaces Uniformed by Coverings, Hungarian-Kyrgyz Friendship Society, Budapest, 2003

[5] General topology, v. 1, 2, Addison-Wesley, Reading, MA

[6] H. J. Borchers, R. N. Sen, “Mathematical implications of Einstein-Weyl causality”, Lect. Notes Phys., 709, 2006, 157–167 | DOI

[7] A. Ch. Chigogidze, “Extension of normal functors”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 6 (1984), 23–26 (in Russian) | Zbl

[8] G. Choquet, “Theory of capacities”, Ann. Inst. Fourier, 5 (1955), 131–295 | DOI

[9] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989 ; Revised and completed edition Sigma Series in Pure Mathematics, 6 | Zbl

[10] D. T. Eshkobilova, “Lifting the functor $I_\beta$ to the category of uniform spaces”, Physical and Mathematical Sciences, 4 (2020), 29–39 | DOI

[11] D. T. Eshkobilova, Kh. F. Kholturaev, “The functor of idempotent probability measures and completeness index of uniform spaces”, Uzbek Mathematical Journal, 1 (2021), 65–79 | Zbl

[12] J. Gunawardena, Idempotency, Publ. of the Newton Institute, 11, Cambridge University Press, Cambridge, 1998 (Online publication date: May 2010) | Zbl

[13] V. V. Fedorchuk, A. Ch. Chigogidze, “On the extension dimension of nonmetrizable manifolds”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 3 (1999), 44–48 | Zbl

[14] H. Inassaridze, “Smooth K-groups for monoid algebras and K-regularity”, Mathematics, 3 (2015), 891–896 | DOI | Zbl

[15] K. P. Hart, J. Nagata, J. E. Vaughan (eds.), “Uniform spaces. I”, Encyclopedia of general topology, Elsevier Science Ltd, 2004, 259–263

[16] E. Hopf, “The partial differential equation $u_t + uu_x =\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | Zbl

[17] A. Ya. Ishmetov, “On functor of idempotent probability measures with compact support”, Uzbek Mathematical Journal, 1 (2010), 72–80

[18] I. M. James, Topologies and uniformities, Springer-Verlag, London, 1999 | Zbl

[19] J. L. Kelley, General topology, van Nostrand, New York, 1955 | Zbl

[20] S. C. Kleene, “Representation of events in nerve sets and nite automata”, Automata Studies, eds. J. McCarthy, C. Shannon, Princeton Univ. Press, 1956, 3–40

[21] V. N. Kolokoltsov, V. P. Maslov, “The general form of the endomorphisms in the space of continuous functions with values in a numerical semiring”, Sov. Math. Dokl., 36 (1988), 55–59 | Zbl

[22] V. N. Kolokoltsov, V. P. Maslov, Idempotent analysis and its applications, Kluwer Publishing House, 1997 | Zbl

[23] G. L. Litvinov, V. P. Maslov, Idempotent Mathematics and Mathematical Physics, Contemporary Mathematics, 377, 2005, 370 pp. | DOI | Zbl

[24] G. L. Litvinov, “Maslov dequantization, idempotent and tropical mathematics: A brief introduction”, Journal of Mathematical Sciences, 140:3 (2007), 426–444 | DOI

[25] G. L. Litvinov, V. P. Maslov, S. N. Sergeev (eds.), Idempotent and tropical mathematics and problems of mathematical physics, v. I, M., 2007, 104 pp.

[26] G. L. Litvinov, V. P. Maslov, G. B. Shpiz, “Idempotent (asymptotic) analysis and the representation theory”, Asymptotic Combinatorics with Applications to Mathematical Physics, eds. V.A. Malyshev, A.M. Vershik, Kluwer Academic Publ, Dordrecht, 2002, 267–278, arXiv: math.RT/0206025 | DOI | Zbl

[27] Yu. V. Sadovnichii, “Lifting the functors $U_\tau$ and $U_R$ to the categories of bounded metric spaces and uniform spaces”, Sb. Math., 191:11 (2000), 1667–1691 | DOI | Zbl

[28] A. A. Zaitov, A. Ya. Ishmetov, “Homotopy properties of the space $I_f (X)$ of idempotent probability measures”, Math. Notes, 106:3–4 (2019), 562–571 | DOI | Zbl

[29] A. A. Zaitov, A. Ya. Ishmetov, “On monad generating by the functor $I_\beta$”, Vestnik of National University of Uzbekistan, 2 (2013), 61–64

[30] A. A. Zaitov, “Geometrical and topological properties of a subspace $P_f (X)$ of probability measures”, Russian Math., 63:10 (2019), 24–32 | DOI | Zbl

[31] A. A. Zaitov, Kh. F. Kholturaev, “On interrelation of the functors $P$ of probability measures and $I$ of idempotent probability measures”, Uzbek Mathematical Journal, 4 (2014), 36–45

[32] A. A. Zaitov, “On a metric on the space of idempotent probability measures”, Applied general topology, 1 (2020), 35–51 | DOI | Zbl

[33] A. A. Zaitov, D. I. Jumaev, “Hyperspace of the-complete spaces and maps”, Eurasian Math. J., 12:2 (2021), 104–110 | Zbl

[34] M. M. Zarichnyi, “Spaces and maps of idempotent measures”, Izv. Math., 74:3 (2010), 481–499 | DOI | Zbl