Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_3_a2, author = {Kh. Almohammad}, title = {On modular inequalities for generalized {Hardy} operators on weighted {Orlicz} spaces}, journal = {Eurasian mathematical journal}, pages = {19--28}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a2/} }
Kh. Almohammad. On modular inequalities for generalized Hardy operators on weighted Orlicz spaces. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 19-28. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a2/
[1] C. Bennett, R. Sharpley, Interpolation of operators, Pure and Appl. Math., 129, Acad. Press, New York, 1988 | Zbl
[2] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex functions and Orlicz spaces, Noordho, Groningen, 1961 | Zbl
[3] Jim Quile Sun, Hardy type inequalities on weighted Orlicz spaces, Ph.D Thesis, The Univ. of Western Ontario, London, Canada, 1995
[4] N. Alkhalil, Kh. Almohammad, “Differential properties of generalized potentials of the Bessel type and Riesz type”, RUDN Journal of Mathematics, Information Sciences and Physics, 26:1 (2018), 3–12 (in Russian) | DOI
[5] N. H. Alkhalil, “Modulus of continuity for Bessel type poteniial over Lorentz space”, Eurasian Math. J., 12:2 (2021), 10–18 | Zbl
[6] Kh. Almohammad, N. Alkhalil, “Integral properties of generalized potentials of the Bessel type and Riesz type”, RUDN Journal of Mathematics, Information Sciences and Physics, 25:4 (2017), 340–349 (in Russian) | DOI
[7] M. L. Goldman, “Estimates for restrictions of monotone operators on the cone of decreasing functions in Orlicz space”, Mathematical Notes, 100:1 (2016), 24–37 (in Russian) | DOI | Zbl
[8] M. L. Goldman, “Estimates for the norms of monotone operators on weighted Orlicz-Lorentz classes”, Doklady Mathematics, 94:3 (2016), 627–631 | DOI | Zbl
[9] M. L. Goldman, “On optimal embeddings of the generalized Bessel and Riesz potentials”, Proceedings of the Steklov Institute of Mathematics, 269 (2010), 91–111 (in Russian) | DOI | Zbl
[10] M. L. Goldman, R. Kerman, “On the principle of duality in Orlicz-Lorentz spaces”, Function Spaces. Differential Operators. Problems of Mathematical Education, Proc. Intern. Conf. dedicated to 75-th birthday of Prof. Kudrjavtsev, v. 1, M., 1998, 179–183