On modular inequalities for generalized Hardy operators on weighted Orlicz spaces
Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 19-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to study the behaviour of Hardy-type operator on weighted Orlicz spaces. The results on modular inequalities for the considered operators of Hardy type are important, since such operators arise in the study of decreasing rearrangements for generalized Bessel and Riesz potentials, in which case Orlicz–Lorentz space serves as an underlying space.
@article{EMJ_2021_12_3_a2,
     author = {Kh. Almohammad},
     title = {On modular inequalities for generalized {Hardy} operators on weighted {Orlicz} spaces},
     journal = {Eurasian mathematical journal},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a2/}
}
TY  - JOUR
AU  - Kh. Almohammad
TI  - On modular inequalities for generalized Hardy operators on weighted Orlicz spaces
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 19
EP  - 28
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a2/
LA  - en
ID  - EMJ_2021_12_3_a2
ER  - 
%0 Journal Article
%A Kh. Almohammad
%T On modular inequalities for generalized Hardy operators on weighted Orlicz spaces
%J Eurasian mathematical journal
%D 2021
%P 19-28
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a2/
%G en
%F EMJ_2021_12_3_a2
Kh. Almohammad. On modular inequalities for generalized Hardy operators on weighted Orlicz spaces. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 19-28. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a2/

[1] C. Bennett, R. Sharpley, Interpolation of operators, Pure and Appl. Math., 129, Acad. Press, New York, 1988 | Zbl

[2] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex functions and Orlicz spaces, Noordho, Groningen, 1961 | Zbl

[3] Jim Quile Sun, Hardy type inequalities on weighted Orlicz spaces, Ph.D Thesis, The Univ. of Western Ontario, London, Canada, 1995

[4] N. Alkhalil, Kh. Almohammad, “Differential properties of generalized potentials of the Bessel type and Riesz type”, RUDN Journal of Mathematics, Information Sciences and Physics, 26:1 (2018), 3–12 (in Russian) | DOI

[5] N. H. Alkhalil, “Modulus of continuity for Bessel type poteniial over Lorentz space”, Eurasian Math. J., 12:2 (2021), 10–18 | Zbl

[6] Kh. Almohammad, N. Alkhalil, “Integral properties of generalized potentials of the Bessel type and Riesz type”, RUDN Journal of Mathematics, Information Sciences and Physics, 25:4 (2017), 340–349 (in Russian) | DOI

[7] M. L. Goldman, “Estimates for restrictions of monotone operators on the cone of decreasing functions in Orlicz space”, Mathematical Notes, 100:1 (2016), 24–37 (in Russian) | DOI | Zbl

[8] M. L. Goldman, “Estimates for the norms of monotone operators on weighted Orlicz-Lorentz classes”, Doklady Mathematics, 94:3 (2016), 627–631 | DOI | Zbl

[9] M. L. Goldman, “On optimal embeddings of the generalized Bessel and Riesz potentials”, Proceedings of the Steklov Institute of Mathematics, 269 (2010), 91–111 (in Russian) | DOI | Zbl

[10] M. L. Goldman, R. Kerman, “On the principle of duality in Orlicz-Lorentz spaces”, Function Spaces. Differential Operators. Problems of Mathematical Education, Proc. Intern. Conf. dedicated to 75-th birthday of Prof. Kudrjavtsev, v. 1, M., 1998, 179–183