Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_3_a1, author = {W. E. Admasu and E. I. Galakhov and O. A. Salieva}, title = {Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the {Laplacian}}, journal = {Eurasian mathematical journal}, pages = {9--18}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a1/} }
TY - JOUR AU - W. E. Admasu AU - E. I. Galakhov AU - O. A. Salieva TI - Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the Laplacian JO - Eurasian mathematical journal PY - 2021 SP - 9 EP - 18 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a1/ LA - en ID - EMJ_2021_12_3_a1 ER -
%0 Journal Article %A W. E. Admasu %A E. I. Galakhov %A O. A. Salieva %T Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the Laplacian %J Eurasian mathematical journal %D 2021 %P 9-18 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a1/ %G en %F EMJ_2021_12_3_a1
W. E. Admasu; E. I. Galakhov; O. A. Salieva. Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the Laplacian. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 9-18. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a1/
[1] A. Farina, J. Serrin, “Entire solutions of completely coercive quasilinear elliptic equations”, J. Diff. Eq., 250:12 (2011), 4367–4408 | DOI | Zbl
[2] A. Farina, J. Serrin, “Entire solutions of completely coercive quasilinear elliptic equations II”, J. Diff. Eq., 250:12 (2011), 4367–4408 | DOI | Zbl
[3] R. Filippucci, P. Pucci, M. Rigoli, “Nonlinear weighted p-Laplacian elliptic inequalities with gradient terms”, Comm. Cont. Math., 12:3 (2010), 501–535 | DOI | Zbl
[4] E. I. Galakhov, O. A. Salieva, “On blow-up of solutions to di erential inequalities with singularities on unbounded sets”, J. Math. Anal. Appl., 408:1 (2013), 102–113 | DOI | Zbl
[5] E. I. Galakhov, O. A. Salieva, “Blow-up of solutions of some nonlinear inequalities with singularities on unbounded sets”, Math. Notes, 98:2 (2015), 222–229 | DOI | Zbl
[6] E. I. Galakhov, O. A. Salieva, “Nonexistence of solutions of some inequalities with gradient nonlinearities and fractional Laplacian”, Proceedings of International Conference Equadi 2017, SPEKTRUM STU Publishing, Bratislava, 157–162
[7] E. I. Galakhov, O. A. Salieva, “Uniqueness of the trivial solution of some inequalities with fractional Laplacian”, Electron. J. Qual. Theory Differ. Equ., 2019:1 (2019), 1–8 | DOI | Zbl
[8] X. Li, F. Li, “Nonexistence of solutions for singular quasilinear di erential inequalities with a gradient nonlinearity”, Nonl. Anal. Theor. Methods Appl. Ser. A, 75:2 (2012), 2812–2822 | Zbl
[9] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362
[10] S. I. Pokhozhaev, “The essentially nonlinear capacities induced by differential operators”, Dokl. Math., 56:3 (1997), 924–926 | Zbl
[11] O. A. Salieva, “Nonexistence of solutions of some nonlinear inequalities with fractional powers of the Laplace operator”, Math. Notes, 101:4 (2017), 699–703 | DOI | Zbl
[12] O. Salieva, “On nonexistence of non-negative solutions for some quasilinear elliptic inequalities and systems in a bounded domain”, Eurasian Math. J., 8:4 (2017), 74–83 | Zbl