Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the Laplacian
Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 9-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we make modification of the results obtained by Mitidieri and Pokhozhaev on sufficient conditions for the nonexistence of nontrivial weak solutions of nonlinear inequalities and systems with integer power of the Laplacian with the nonlinearity term of the form $a(x)|\Delta^m u|^q+b(x)|u|^s$. We obtain an optimal a priori estimate by employing the nonlinear capacity method under a special choice of test functions. Finally, we prove the nonexistence of nontrivial weak solutions of the considered inequalities and systems by contradiction.
@article{EMJ_2021_12_3_a1,
     author = {W. E. Admasu and E. I. Galakhov and O. A. Salieva},
     title = {Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the {Laplacian}},
     journal = {Eurasian mathematical journal},
     pages = {9--18},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a1/}
}
TY  - JOUR
AU  - W. E. Admasu
AU  - E. I. Galakhov
AU  - O. A. Salieva
TI  - Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the Laplacian
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 9
EP  - 18
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a1/
LA  - en
ID  - EMJ_2021_12_3_a1
ER  - 
%0 Journal Article
%A W. E. Admasu
%A E. I. Galakhov
%A O. A. Salieva
%T Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the Laplacian
%J Eurasian mathematical journal
%D 2021
%P 9-18
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a1/
%G en
%F EMJ_2021_12_3_a1
W. E. Admasu; E. I. Galakhov; O. A. Salieva. Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the Laplacian. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 9-18. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a1/

[1] A. Farina, J. Serrin, “Entire solutions of completely coercive quasilinear elliptic equations”, J. Diff. Eq., 250:12 (2011), 4367–4408 | DOI | Zbl

[2] A. Farina, J. Serrin, “Entire solutions of completely coercive quasilinear elliptic equations II”, J. Diff. Eq., 250:12 (2011), 4367–4408 | DOI | Zbl

[3] R. Filippucci, P. Pucci, M. Rigoli, “Nonlinear weighted p-Laplacian elliptic inequalities with gradient terms”, Comm. Cont. Math., 12:3 (2010), 501–535 | DOI | Zbl

[4] E. I. Galakhov, O. A. Salieva, “On blow-up of solutions to di erential inequalities with singularities on unbounded sets”, J. Math. Anal. Appl., 408:1 (2013), 102–113 | DOI | Zbl

[5] E. I. Galakhov, O. A. Salieva, “Blow-up of solutions of some nonlinear inequalities with singularities on unbounded sets”, Math. Notes, 98:2 (2015), 222–229 | DOI | Zbl

[6] E. I. Galakhov, O. A. Salieva, “Nonexistence of solutions of some inequalities with gradient nonlinearities and fractional Laplacian”, Proceedings of International Conference Equadi 2017, SPEKTRUM STU Publishing, Bratislava, 157–162

[7] E. I. Galakhov, O. A. Salieva, “Uniqueness of the trivial solution of some inequalities with fractional Laplacian”, Electron. J. Qual. Theory Differ. Equ., 2019:1 (2019), 1–8 | DOI | Zbl

[8] X. Li, F. Li, “Nonexistence of solutions for singular quasilinear di erential inequalities with a gradient nonlinearity”, Nonl. Anal. Theor. Methods Appl. Ser. A, 75:2 (2012), 2812–2822 | Zbl

[9] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362

[10] S. I. Pokhozhaev, “The essentially nonlinear capacities induced by differential operators”, Dokl. Math., 56:3 (1997), 924–926 | Zbl

[11] O. A. Salieva, “Nonexistence of solutions of some nonlinear inequalities with fractional powers of the Laplace operator”, Math. Notes, 101:4 (2017), 699–703 | DOI | Zbl

[12] O. Salieva, “On nonexistence of non-negative solutions for some quasilinear elliptic inequalities and systems in a bounded domain”, Eurasian Math. J., 8:4 (2017), 74–83 | Zbl