Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_2_a8, author = {M. I. Tleubergenov and G. T. Ibraeva}, title = {On the closure of stochastic differential equations of motion}, journal = {Eurasian mathematical journal}, pages = {82--89}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a8/} }
M. I. Tleubergenov; G. T. Ibraeva. On the closure of stochastic differential equations of motion. Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 82-89. http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a8/
[1] N. V. Abramov, R. G. Mukharlyamov, Zh. K. Kirgizbaev, Control the dynamics of systems with program communications, Monograph, Publishing House of Nizhnevartovsk. State. Univ., Nizhnevartovsk, 2013 (in Russian)
[2] S. A. Budochkina, V. M. Savchin, “An operator equation with the second time derivative and Hamilton-admissible equations”, Doklady Mathematics, 94:2 (2016), 487–489 | DOI | MR | Zbl
[3] N. P. Erugin, “Construction of the entire set of system of differential equations with integral curve”, Prikl. mat. mech., 10:6 (1952), 659–670 | MR
[4] A. S. Galiullin, Methods for the solution of inverse problems of dynamics, Nauka, M., 1986 (in Russian) | MR | Zbl
[5] G. T. Ibraeva, M. I. Tleubergenov, “Main inverse problem for differential systems with degenerate diffusion”, Ukrainian Mathematical Journal, 65:5 (2013), 787–792 | DOI | MR | Zbl
[6] G. T. Ibraeva, M. I. Tleubergenov, “On the solvability of the main inverse problem for stochastic differential systems”, Ukrainian mathematical journal, 71:1 (2019), 157–165 | DOI | MR | Zbl
[7] R. Z. Khas'minskii, Stability of systems of differential equations under random perturbations of their parameters, Nauka, M., 1969 (in Russian) | MR | Zbl
[8] J. Llibre, R. Ramirez, Inverse problems in ordinary differential equations and applications, Springer International publishing Switzerland, 2016 | MR | Zbl
[9] I. A. Mukhamedzyanov, R. G. Mukharlyamov, Equations of program motions, M., 1986 (in Russian)
[10] R. G. Mukharlyamov, “Simulation of control processes, stability and stabilization of systems with program contraints”, Journal of computer and systems sciences international, 54:1 (2015), 13–26 | DOI | MR | Zbl
[11] V. S. Pugachev, I. N. Sinitsyn, Stochastic differential systems, analysis and filtration, Nauka, M., 1990 (in Russian) | MR
[12] P. Sagirov, “Stochastic methods in the dynamics of satellites”, Mekhanika. Sbornik Perevodov, 1974, no. 5, 28–47
[13] A. M. Samoilenko, O. Stanzhytskyi, Qualitative and asymptotic analysis of differential equations with random perturbations, World scientific, Singapore, 2011 | MR | Zbl
[14] V. M. Savchin, S. A. Budochkina, “Invariance of functionals and related Euler-Lagrange equations”, Russian Mathematics, 61:2 (2017), 49–54 | DOI | MR | Zbl
[15] V. M. Savchin, S. A. Budochkina, Y. Gondo, A. V. Slavko, “On the connection between first integrals, integral invariants and potentiality of evolutionary equations”, Eurasian Math. J., 9:4 (2018), 82–90 | DOI | MR | Zbl
[16] I. N. Sinitsyn, “On the fluctuations of a gyroscope in gimbal suspension”, Izv. Akad. Nauk USSR, Mekh. Tverd. Tela, 1976, no. 3, 23–31
[17] M. I. Tleubergenov, G. T. Ibraeva, “Stochastic inverse problem with indirect control”, Differential equations, 53:10 (2017), 1418–1422 | DOI | MR | Zbl
[18] M. I. Tleubergenov, G. T. Ibraeva, “On the restoration problem with degenerated diffusion”, Turkic world mathematical society journal of pure and applied mathematics, 6:1 (2015), 93–99 | MR | Zbl
[19] M. I. Tleubergenov, G. T. Ibraeva, “On inverse problem of closure of differential systems with degenerate diffusion”, Eurasian mathematical journal, 10:2 (2019), 146–155 | DOI | MR
[20] M. I. Tleubergenov, “On the inverse stochastic reconstruction problem”, Differential equations, 50:2 (2014), 274–278 | DOI | MR | Zbl
[21] M. I. Tleubergenov, G. K. Vassilina, “On stochastic inverse problem of construction of stable program motion”, Open Mathematics, 19 (2021), 157–162 | DOI | MR
[22] M. I. Tleubergenov, G. K. Vassilina, G. A. Tuzelbaeva, “On construction of a field of forces along given trajectories in the presence of random perturbations”, Bulletin of Karaganda University. Mathematics series, 2021, no. 1 (101), 98–103 | DOI
[23] S. S. Zhumatov, “Asymptotic stability of impliciit differential systems in the vicinity of program manifold”, Ukrainian mathematical journal, 66:4 (2014), 625–632 | DOI | MR | Zbl
[24] S. S. Zhumatov, “Exponential stability of a program manifold of indirect control systems”, Ukrainian mathematical journal, 62:6 (2010), 907–915 | DOI | MR | Zbl
[25] S. S. Zhumatov, “Stability of a program manifold of control systems with locally quadratic relations”, Ukrainian mathematical journal, 61:3 (2009), 500–509 | DOI | MR | Zbl