On an inverse problem for a parabolic equation in a degenerate angular domain
Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 25-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a coefficient inverse problem for a parabolic equation in a degenerate angular domain when the moving part of the boundary changes linearly. We show that the inverse problem for the homogeneous heat equation with homogeneous boundary conditions has a nontrivial solution up to a constant factor consistent with an additional condition. The boundedness of this solution and this additional condition is proved. Moreover, the solution of the considered inverse problem is found in an explicit form and it is proved that the required coefficient is determined uniquely. It is shown that the obtained nontrivial solution of the inverse problem has no singularities and the additional condition also has no singularities.
@article{EMJ_2021_12_2_a3,
     author = {M. T. Jenaliyev and M. I. Ramazanov and M. G. Yergaliyev},
     title = {On an inverse problem for a parabolic equation in a degenerate angular domain},
     journal = {Eurasian mathematical journal},
     pages = {25--38},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a3/}
}
TY  - JOUR
AU  - M. T. Jenaliyev
AU  - M. I. Ramazanov
AU  - M. G. Yergaliyev
TI  - On an inverse problem for a parabolic equation in a degenerate angular domain
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 25
EP  - 38
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a3/
LA  - en
ID  - EMJ_2021_12_2_a3
ER  - 
%0 Journal Article
%A M. T. Jenaliyev
%A M. I. Ramazanov
%A M. G. Yergaliyev
%T On an inverse problem for a parabolic equation in a degenerate angular domain
%J Eurasian mathematical journal
%D 2021
%P 25-38
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a3/
%G en
%F EMJ_2021_12_2_a3
M. T. Jenaliyev; M. I. Ramazanov; M. G. Yergaliyev. On an inverse problem for a parabolic equation in a degenerate angular domain. Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 25-38. http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a3/

[1] M. M. Amangaliyeva, D. M. Akhmanova, M. T. Dzhenaliev, M. I. Ramazanov, “Boundary value problems for a spectrally loaded heat operator with load line approaching the time axis at zero or infinity”, Differential Equations, 47 (2011), 231–243 (in Russian) | DOI | MR

[2] M.M Amangaliyeva, D. M. Akhmanova, M. T. Dzhenaliev, M. I. Ramazanov, “On boundary value problem of heat conduction with free boundary”, Nonclassical equations of mathematical physics, 2012, 29–44 (in Russian)

[3] M. M. Amangaliyeva, M. T. Dzhenaliev, M. T. Kosmakova, M. I. Ramazanov, “On a Volterra equation of the second kind with ‘incompressible’ kernel”, Advances in Difference Equations, 71 (2015), 1–14 | MR

[4] M. M. Amangaliyeva, M. T. Dzhenaliev, M. T. Kosmakova, M. I. Ramazanov, “On one homogeneous problem for the heat equation in an infinite angular domain”, Siberian Mathematical Journal, 56:6 (2015), 982–995 (in Russian) | DOI | MR

[5] T. Berroug, H. Ding, R. Labbas, B. Kh. Sadallah, “On a degenerate parabolic problem in Hölder spaces”, Applied Mathematics and Computation, 162 (2015), 811–833 | DOI | MR

[6] I. S. Gradshteyn, I. M. Ryzhik, Tables of integrals, series, products, Academic Press, 2007 | MR

[7] M. T. Jenaliyev, K. Imanberdiyev, A. Kassymbekova, K. Sharipov, “Stabilization of solutions of two-dimensional parabolic equations and related spectral problems”, Eurasian Math. J., 11:1 (2020), 72–85 | DOI | MR | Zbl

[8] M. T. Jenaliyev, S. A. Iskakov, M. I. Ramazanov, “On a parabolic problem in an infinite corner domain”, Bulletin of the Karaganda University-Mathematics, 85:1 (2017), 28–35 | DOI | MR

[9] M. T. Jenaliyev, M. I. Ramazanov, M. T. Kosmakova, Z. M. Tuleutaeva, “On the solution to a two-dimensional heat conduction problem in a degenerate domain”, Eurasian Math. J., 11:3 (2020), 89–94 | DOI | MR | Zbl

[10] A. Kheloufi, “Existence and uniqueness results for parabolic equations with Robin type boundary conditions in a non-regular domain of $R^3$”, Applied Mathematics and Computation, 220 (2013), 756–769 | DOI | MR | Zbl

[11] A. Kheloufi, B. Kh. Sadallah, “On the regularity of the heat equation solution in non-cylindrical domains: Two approaches”, Applied Mathematics and Computation, 218 (2011), 1623–1633 | DOI | MR | Zbl

[12] A. Kheloufi, B. Kh. Sadallah, “Resolution of a high-order parabolic equation in conical time-dependent domains of $R^3$”, Arab Journal of Mathematical Sciences, 22 (2016), 165–181 | DOI | MR | Zbl

[13] R. Labbas, A. Medeghri, B. Kh. Sadallah, “An $L_p$-approach for the study of degenerate parabolic equations”, Electronic Journal of Differential Equations, 36 (2005), 1–20 | MR

[14] D. Lupo, K. R. Rayne, N. I. Popivanov, “Nonexistense of nontrivial solutions for supercritical equations of mixed elliptic-hyperbolic type”, Workshop on Contributions to Nonlinear Analysis, Progress in Nonlinear Differential Equations and their Applications, 66, eds. Costa D., Lopes O., Manasevich R., 2006, 371 | DOI | MR | Zbl

[15] D. Lupo, K. R. Rayne, N. I. Popivanov, “On the degenerate hyperbolic Goursat problem for linear and nonlinear equations of Tricomi type”, Nonlinear Analysis: Theory, Methods and Applications, 108 (2014), 29–56 | DOI | MR | Zbl

[16] V. A. Solonnikov, A. Fasano, “One-dimensional parabolic problem arising in the study of some free boundary problems”, Zapiski nauchnykh seminarov POMI, 269, 2000, 322–338 (in Russian) | MR | Zbl

[17] J. Zhou, H. Li, “Ritz-Galerkin method for solving an inverse problem of parabolic equation with moving boundaries and integral condition”, Applicable Analysis, 98:10 (2019), 1741–1755 | DOI | MR | Zbl

[18] J. Zhou, Y. Xu, “Direct and inverse problem for the parabolic equation with initial value and time-dependent boundaries”, Applicable Analysis, 95:6 (2016), 1307–1326 | DOI | MR | Zbl