Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_2_a3, author = {M. T. Jenaliyev and M. I. Ramazanov and M. G. Yergaliyev}, title = {On an inverse problem for a parabolic equation in a degenerate angular domain}, journal = {Eurasian mathematical journal}, pages = {25--38}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a3/} }
TY - JOUR AU - M. T. Jenaliyev AU - M. I. Ramazanov AU - M. G. Yergaliyev TI - On an inverse problem for a parabolic equation in a degenerate angular domain JO - Eurasian mathematical journal PY - 2021 SP - 25 EP - 38 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a3/ LA - en ID - EMJ_2021_12_2_a3 ER -
%0 Journal Article %A M. T. Jenaliyev %A M. I. Ramazanov %A M. G. Yergaliyev %T On an inverse problem for a parabolic equation in a degenerate angular domain %J Eurasian mathematical journal %D 2021 %P 25-38 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a3/ %G en %F EMJ_2021_12_2_a3
M. T. Jenaliyev; M. I. Ramazanov; M. G. Yergaliyev. On an inverse problem for a parabolic equation in a degenerate angular domain. Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 25-38. http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a3/
[1] M. M. Amangaliyeva, D. M. Akhmanova, M. T. Dzhenaliev, M. I. Ramazanov, “Boundary value problems for a spectrally loaded heat operator with load line approaching the time axis at zero or infinity”, Differential Equations, 47 (2011), 231–243 (in Russian) | DOI | MR
[2] M.M Amangaliyeva, D. M. Akhmanova, M. T. Dzhenaliev, M. I. Ramazanov, “On boundary value problem of heat conduction with free boundary”, Nonclassical equations of mathematical physics, 2012, 29–44 (in Russian)
[3] M. M. Amangaliyeva, M. T. Dzhenaliev, M. T. Kosmakova, M. I. Ramazanov, “On a Volterra equation of the second kind with ‘incompressible’ kernel”, Advances in Difference Equations, 71 (2015), 1–14 | MR
[4] M. M. Amangaliyeva, M. T. Dzhenaliev, M. T. Kosmakova, M. I. Ramazanov, “On one homogeneous problem for the heat equation in an infinite angular domain”, Siberian Mathematical Journal, 56:6 (2015), 982–995 (in Russian) | DOI | MR
[5] T. Berroug, H. Ding, R. Labbas, B. Kh. Sadallah, “On a degenerate parabolic problem in Hölder spaces”, Applied Mathematics and Computation, 162 (2015), 811–833 | DOI | MR
[6] I. S. Gradshteyn, I. M. Ryzhik, Tables of integrals, series, products, Academic Press, 2007 | MR
[7] M. T. Jenaliyev, K. Imanberdiyev, A. Kassymbekova, K. Sharipov, “Stabilization of solutions of two-dimensional parabolic equations and related spectral problems”, Eurasian Math. J., 11:1 (2020), 72–85 | DOI | MR | Zbl
[8] M. T. Jenaliyev, S. A. Iskakov, M. I. Ramazanov, “On a parabolic problem in an infinite corner domain”, Bulletin of the Karaganda University-Mathematics, 85:1 (2017), 28–35 | DOI | MR
[9] M. T. Jenaliyev, M. I. Ramazanov, M. T. Kosmakova, Z. M. Tuleutaeva, “On the solution to a two-dimensional heat conduction problem in a degenerate domain”, Eurasian Math. J., 11:3 (2020), 89–94 | DOI | MR | Zbl
[10] A. Kheloufi, “Existence and uniqueness results for parabolic equations with Robin type boundary conditions in a non-regular domain of $R^3$”, Applied Mathematics and Computation, 220 (2013), 756–769 | DOI | MR | Zbl
[11] A. Kheloufi, B. Kh. Sadallah, “On the regularity of the heat equation solution in non-cylindrical domains: Two approaches”, Applied Mathematics and Computation, 218 (2011), 1623–1633 | DOI | MR | Zbl
[12] A. Kheloufi, B. Kh. Sadallah, “Resolution of a high-order parabolic equation in conical time-dependent domains of $R^3$”, Arab Journal of Mathematical Sciences, 22 (2016), 165–181 | DOI | MR | Zbl
[13] R. Labbas, A. Medeghri, B. Kh. Sadallah, “An $L_p$-approach for the study of degenerate parabolic equations”, Electronic Journal of Differential Equations, 36 (2005), 1–20 | MR
[14] D. Lupo, K. R. Rayne, N. I. Popivanov, “Nonexistense of nontrivial solutions for supercritical equations of mixed elliptic-hyperbolic type”, Workshop on Contributions to Nonlinear Analysis, Progress in Nonlinear Differential Equations and their Applications, 66, eds. Costa D., Lopes O., Manasevich R., 2006, 371 | DOI | MR | Zbl
[15] D. Lupo, K. R. Rayne, N. I. Popivanov, “On the degenerate hyperbolic Goursat problem for linear and nonlinear equations of Tricomi type”, Nonlinear Analysis: Theory, Methods and Applications, 108 (2014), 29–56 | DOI | MR | Zbl
[16] V. A. Solonnikov, A. Fasano, “One-dimensional parabolic problem arising in the study of some free boundary problems”, Zapiski nauchnykh seminarov POMI, 269, 2000, 322–338 (in Russian) | MR | Zbl
[17] J. Zhou, H. Li, “Ritz-Galerkin method for solving an inverse problem of parabolic equation with moving boundaries and integral condition”, Applicable Analysis, 98:10 (2019), 1741–1755 | DOI | MR | Zbl
[18] J. Zhou, Y. Xu, “Direct and inverse problem for the parabolic equation with initial value and time-dependent boundaries”, Applicable Analysis, 95:6 (2016), 1307–1326 | DOI | MR | Zbl