Boundedness of Riemann--Liouville fractional integral operator in Morrey spaces
Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 82-91

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present paper is to prove the boundedness of the multidimensional Riemann–Liouville operator from the quasi-normed Morrey space $M_p^\lambda(\Omega)$ to another quasi-normed Morrey space $M_q^\mu(\Omega)$ and to estimate the dependence of the norm of this operator on $\Omega$.
@article{EMJ_2021_12_1_a7,
     author = {M. A. Senouci},
     title = {Boundedness of {Riemann--Liouville} fractional integral operator in {Morrey} spaces},
     journal = {Eurasian mathematical journal},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a7/}
}
TY  - JOUR
AU  - M. A. Senouci
TI  - Boundedness of Riemann--Liouville fractional integral operator in Morrey spaces
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 82
EP  - 91
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a7/
LA  - en
ID  - EMJ_2021_12_1_a7
ER  - 
%0 Journal Article
%A M. A. Senouci
%T Boundedness of Riemann--Liouville fractional integral operator in Morrey spaces
%J Eurasian mathematical journal
%D 2021
%P 82-91
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a7/
%G en
%F EMJ_2021_12_1_a7
M. A. Senouci. Boundedness of Riemann--Liouville fractional integral operator in Morrey spaces. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 82-91. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a7/