Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_1_a7, author = {M. A. Senouci}, title = {Boundedness of {Riemann--Liouville} fractional integral operator in {Morrey} spaces}, journal = {Eurasian mathematical journal}, pages = {82--91}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a7/} }
M. A. Senouci. Boundedness of Riemann--Liouville fractional integral operator in Morrey spaces. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 82-91. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a7/
[1] A. A. Kilbas, H. M. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, The Netherlands, 2006 | MR | Zbl
[2] V. I. Burenkov, T. V. Tararykova, “Young's inequality for convolutions in Morrey-type spaces”, Eurasian Math. J., 7:2 (2016), 92–99 | MR | Zbl
[3] Proceedings Steklov Inst. Math., 293 (2016), 107–126 | DOI | DOI | MR | Zbl
[4] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR
[5] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993 | MR | Zbl
[6] Z. Fu, J. Trujillo, Q. Wu, “Riemann-Liouville fractional calculus in Morrey spaces and applications”, Comput Math Appl., 2016 | DOI