Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_1_a3, author = {A. Kalybay and R. Oinarov}, title = {Boundedness of {Riemann--Liouville} operator from weighted {Sobolev} space to weighted {Lebesgue} space}, journal = {Eurasian mathematical journal}, pages = {39--48}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a3/} }
TY - JOUR AU - A. Kalybay AU - R. Oinarov TI - Boundedness of Riemann--Liouville operator from weighted Sobolev space to weighted Lebesgue space JO - Eurasian mathematical journal PY - 2021 SP - 39 EP - 48 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a3/ LA - en ID - EMJ_2021_12_1_a3 ER -
A. Kalybay; R. Oinarov. Boundedness of Riemann--Liouville operator from weighted Sobolev space to weighted Lebesgue space. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 39-48. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a3/
[1] S. M. Farsani, “On boundedness and compactness of Riemann-Liouville fractional operators”, Siberian Math. J., 54:2 (2013), 368–378 | DOI | MR | Zbl
[2] A. A. Kalybay, R. Oinarov, “Kernel operators and their boundedness from weighted Sobolev space to weighted Lebesgue space”, Turk. J. Math., 43 (2019), 301–315 | DOI | MR | Zbl
[3] A. A. Meskhi, “Solution of some weight problems for the Riemenn-Liouville and Weyl operators”, Georgian Math. J., 5:6 (1998), 565–574 | DOI | MR | Zbl
[4] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc., 48:2 (1993), 103–116 | DOI | MR | Zbl
[5] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Variables and Elliptic Equations, 56:10-11 (2011), 1021–1038 | DOI | MR | Zbl
[6] R. Oinarov, “Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits”, Siberian Math. J., 52:6 (2011), 1042–1055 | DOI | MR | Zbl
[7] R. Oinarov, “Boundedness of integral operators in weighted Sobolev spaces”, Izvestiya: Mathematics, 78:4 (2014), 836–853 | DOI | MR | Zbl
[8] R. Oinarov, “Boundedness and compactness of a class of convolution integral operators of fractional integration type”, Proc. Steklov Inst. Math., 293 (2016), 255–271 | DOI | MR | Zbl
[9] D. V. Prokhorov, “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc., 64:2 (2000), 617–628 | DOI | MR
[10] D. V. Prokhorov, V. D. Stepanov, “Weighted estimates for the Riemann-Liouville operators and applications”, Proc. Steklov Inst. Math., 243 (2003), 278–301 | MR | Zbl
[11] N. A. Rautian, “On the boundedness of a class of fractional type integral operators”, Sbornik. Math., 200:12 (2009), 1807–1832 | DOI | MR | Zbl
[12] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Ineq. Appl., 13:3 (2010), 449–510 | MR | Zbl