Boundedness of Riemann--Liouville operator from weighted Sobolev space to weighted Lebesgue space
Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 39-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain a criterion for the boundedness of the Riemann–Liouville fractional integration operator from a weighted Sobolev space to a weighted Lebesgue space.
@article{EMJ_2021_12_1_a3,
     author = {A. Kalybay and R. Oinarov},
     title = {Boundedness of {Riemann--Liouville} operator from weighted {Sobolev} space to weighted {Lebesgue} space},
     journal = {Eurasian mathematical journal},
     pages = {39--48},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a3/}
}
TY  - JOUR
AU  - A. Kalybay
AU  - R. Oinarov
TI  - Boundedness of Riemann--Liouville operator from weighted Sobolev space to weighted Lebesgue space
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 39
EP  - 48
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a3/
LA  - en
ID  - EMJ_2021_12_1_a3
ER  - 
%0 Journal Article
%A A. Kalybay
%A R. Oinarov
%T Boundedness of Riemann--Liouville operator from weighted Sobolev space to weighted Lebesgue space
%J Eurasian mathematical journal
%D 2021
%P 39-48
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a3/
%G en
%F EMJ_2021_12_1_a3
A. Kalybay; R. Oinarov. Boundedness of Riemann--Liouville operator from weighted Sobolev space to weighted Lebesgue space. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 39-48. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a3/

[1] S. M. Farsani, “On boundedness and compactness of Riemann-Liouville fractional operators”, Siberian Math. J., 54:2 (2013), 368–378 | DOI | MR | Zbl

[2] A. A. Kalybay, R. Oinarov, “Kernel operators and their boundedness from weighted Sobolev space to weighted Lebesgue space”, Turk. J. Math., 43 (2019), 301–315 | DOI | MR | Zbl

[3] A. A. Meskhi, “Solution of some weight problems for the Riemenn-Liouville and Weyl operators”, Georgian Math. J., 5:6 (1998), 565–574 | DOI | MR | Zbl

[4] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc., 48:2 (1993), 103–116 | DOI | MR | Zbl

[5] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Variables and Elliptic Equations, 56:10-11 (2011), 1021–1038 | DOI | MR | Zbl

[6] R. Oinarov, “Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits”, Siberian Math. J., 52:6 (2011), 1042–1055 | DOI | MR | Zbl

[7] R. Oinarov, “Boundedness of integral operators in weighted Sobolev spaces”, Izvestiya: Mathematics, 78:4 (2014), 836–853 | DOI | MR | Zbl

[8] R. Oinarov, “Boundedness and compactness of a class of convolution integral operators of fractional integration type”, Proc. Steklov Inst. Math., 293 (2016), 255–271 | DOI | MR | Zbl

[9] D. V. Prokhorov, “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc., 64:2 (2000), 617–628 | DOI | MR

[10] D. V. Prokhorov, V. D. Stepanov, “Weighted estimates for the Riemann-Liouville operators and applications”, Proc. Steklov Inst. Math., 243 (2003), 278–301 | MR | Zbl

[11] N. A. Rautian, “On the boundedness of a class of fractional type integral operators”, Sbornik. Math., 200:12 (2009), 1807–1832 | DOI | MR | Zbl

[12] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Ineq. Appl., 13:3 (2010), 449–510 | MR | Zbl