Unconditional bases of systems of Bessel functions
Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 76-86

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a criterion of unconditional basicity of the system $(\sqrt{x\rho_k}J_\nu(x\rho_k): k\in\mathbb{N})$ in the space $L^2(0; 1)$ where $J_\nu$ is the Bessel function of the first kind of index $\nu\geqslant-1/2$ and $(\rho_k: k\in\mathbb{N})$ is a sequence of distinct nonzero complex numbers.
@article{EMJ_2020_11_4_a6,
     author = {B. V. Vynnyts'kyi and R. V. Khats' and I. B. Sheparovich},
     title = {Unconditional bases of systems of {Bessel} functions},
     journal = {Eurasian mathematical journal},
     pages = {76--86},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a6/}
}
TY  - JOUR
AU  - B. V. Vynnyts'kyi
AU  - R. V. Khats'
AU  - I. B. Sheparovich
TI  - Unconditional bases of systems of Bessel functions
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 76
EP  - 86
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a6/
LA  - en
ID  - EMJ_2020_11_4_a6
ER  - 
%0 Journal Article
%A B. V. Vynnyts'kyi
%A R. V. Khats'
%A I. B. Sheparovich
%T Unconditional bases of systems of Bessel functions
%J Eurasian mathematical journal
%D 2020
%P 76-86
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a6/
%G en
%F EMJ_2020_11_4_a6
B. V. Vynnyts'kyi; R. V. Khats'; I. B. Sheparovich. Unconditional bases of systems of Bessel functions. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 76-86. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a6/