Unconditional bases of systems of Bessel functions
Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 76-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a criterion of unconditional basicity of the system $(\sqrt{x\rho_k}J_\nu(x\rho_k): k\in\mathbb{N})$ in the space $L^2(0; 1)$ where $J_\nu$ is the Bessel function of the first kind of index $\nu\geqslant-1/2$ and $(\rho_k: k\in\mathbb{N})$ is a sequence of distinct nonzero complex numbers.
@article{EMJ_2020_11_4_a6,
     author = {B. V. Vynnyts'kyi and R. V. Khats' and I. B. Sheparovich},
     title = {Unconditional bases of systems of {Bessel} functions},
     journal = {Eurasian mathematical journal},
     pages = {76--86},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a6/}
}
TY  - JOUR
AU  - B. V. Vynnyts'kyi
AU  - R. V. Khats'
AU  - I. B. Sheparovich
TI  - Unconditional bases of systems of Bessel functions
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 76
EP  - 86
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a6/
LA  - en
ID  - EMJ_2020_11_4_a6
ER  - 
%0 Journal Article
%A B. V. Vynnyts'kyi
%A R. V. Khats'
%A I. B. Sheparovich
%T Unconditional bases of systems of Bessel functions
%J Eurasian mathematical journal
%D 2020
%P 76-86
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a6/
%G en
%F EMJ_2020_11_4_a6
B. V. Vynnyts'kyi; R. V. Khats'; I. B. Sheparovich. Unconditional bases of systems of Bessel functions. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 76-86. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a6/

[1] N. I. Akhiezer, “To the theory of paired integral equations”, Uchenye Zapiski Kharkov Gos. Univ., 25 (1957), 5–31 (in Russian) | MR

[2] R. P. Boas, H. Pollard, “Complete sets of Bessel and Legendre functions”, Ann. of Math., 48:2 (1947), 366–384 | DOI | MR | Zbl

[3] M. M. Dzhrbashyan, Integral transforms and representations of functions in the complex domain, Nauka, M., 1966 (in Russian) | MR | Zbl

[4] M. M. Dzhrbashyan, S. G. Rafayelyan, “On entire functions of exponential type in weighted $L^2$ classes”, Dokl. Akad. Nauk Arm. SSR, 73:1 (1981), 29–36 (in Russian) | MR | Zbl

[5] Sov. J. Contemp. Math. Anal., Arm. Acad. Sci., 22:1 (1987), 20–61 | MR | Zbl

[6] M. M. Djrbashian, S. G. Raphaelian, “Interpolation theorems and expansions with respect to Fourier type systems”, J. Approx. Theory, 50:4 (1987), 297–325 | DOI | MR | Zbl

[7] J. B. Garnett, Bounded analytic functions, Academic Press, 1981 | MR | Zbl

[8] J. L. Griffith, “Hankel transforms of functions zero outside a finite interval”, J. Proc. Roy. Soc. New South Wales, 89 (1955), 109–115 | MR

[9] Sov. J. Contemp. Math. Anal., Arm. Acad. Sci., 23:3 (1988), 43–78 | MR | Zbl

[10] Sov. J. Contemp. Math. Anal., Arm. Acad. Sci., 25:1 (1990), 79–85 | MR | Zbl

[11] J. Math. Sci. (N.Y.), 71:1 (1994), 2192–2221 | DOI | MR

[12] Funct. Anal. Appl., 49:1 (2015), 64–66 | DOI | DOI | MR | MR | Zbl

[13] H. Hochstadt, “The mean convergence of Fourier-Bessel series”, SIAM Rev., 9 (1967), 211–218 | DOI | MR | Zbl

[14] S. V. Khrushchev, N. K. Nikol'skii, B. S. Pavlov, “Unconditional bases of exponentials and reproducing kernels”, Complex Analysis and Spectral Theory, Lecture Notes in Math., 864, eds. V.P. Havin, N.K. Nikol'skii, Springer-Verlag, 1981, 214–335 | DOI | MR

[15] P. Koosis, “Introduction to $H_p$ spaces”, Cambridge Tracts in Mathematics, 115, Second edition, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[16] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, R.I., 1996 | DOI | MR | Zbl

[17] Yu. I. Lyubarskii, K. Seip, “Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's $(A_p)$ condition”, Rev. Mat. Iberoam., 13:2 (1997), 361–376 | DOI | MR | Zbl

[18] Yu. I. Lyubarskii, K. Seip, “Weighted Paley-Wiener spaces”, J. Amer. Math. Soc., 15:4 (2002), 979–1006 | DOI | MR | Zbl

[19] St. Petersburg Math. J., 3:5 (1992), 1043–1064 | MR

[20] Sov. Math. Dokl., 21 (1980), 937–941 | MR

[21] Sov. Math. Dokl., 20:4 (1979), 655–659 | MR | Zbl

[22] Sov. J. Contemp. Math. Anal., Arm. Acad. Sci., 18:3 (1983), 1–21 | MR

[23] Sov. J. Contemp. Math. Anal., Arm. Acad. Sci., 19:3 (1984), 21–32 | MR

[24] J. Math. Sci. (N.Y.), 130:6 (2005), 5083–5255 | DOI | MR | Zbl

[25] I. Singer, Bases in Banach spaces, v. 1, Springer-Verlag, Berlin, 1970 | MR | Zbl

[26] K. Stempak, “On convergence and divergence of Fourier-Bessel series”, Electron. Trans. Numer. Anal., 14 (2002), 223–235 | MR | Zbl

[27] Mir Publishers, M., 1984 | MR

[28] B. V. Vynnyts'kyi, R. V. Khats', “Completeness and minimality of systems of Bessel functions”, Ufa Math. J., 5:2 (2013), 131–141 | DOI | MR

[29] B. V. Vynnyts'kyi, R. V. Khats', “On the completeness and minimality of sets of Bessel functions in weighted $L^2$-spaces”, Eurasian Math. J., 6:1 (2015), 123–131 | MR | Zbl

[30] J. Contemp. Math. Anal., 50:6 (2015), 300–305 | DOI | MR | Zbl

[31] B. V. Vynnyts'kyi, R. V. Khats', “Complete biorthogonal systems of Bessel functions”, Mat. Stud., 48:2 (2017), 150–155 | MR | Zbl

[32] B. V. Vynnyts'kyi, R. V. Khats', “Some approximation properties of the systems of Bessel functions of index $-3/2$”, Mat. Stud., 34:2 (2010), 152–159 | MR | Zbl

[33] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944 | MR | Zbl