Boundedness and compactness of a certain class of matrix operators with variable limits of summation
Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 66-75

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for the boundedness and compactness of the matrix operator of the form $(Af)_n=\sum_{k=\alpha(n)}^{\beta(n)}a_{n,k}f_k$, from $l_{p,v}$ to $l_{q,u}$ when $1$ are given.
@article{EMJ_2020_11_4_a5,
     author = {A. M. Temirkhanova and A. T. Beszhanova},
     title = {Boundedness and compactness of a certain class of matrix operators with variable limits of summation},
     journal = {Eurasian mathematical journal},
     pages = {66--75},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a5/}
}
TY  - JOUR
AU  - A. M. Temirkhanova
AU  - A. T. Beszhanova
TI  - Boundedness and compactness of a certain class of matrix operators with variable limits of summation
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 66
EP  - 75
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a5/
LA  - en
ID  - EMJ_2020_11_4_a5
ER  - 
%0 Journal Article
%A A. M. Temirkhanova
%A A. T. Beszhanova
%T Boundedness and compactness of a certain class of matrix operators with variable limits of summation
%J Eurasian mathematical journal
%D 2020
%P 66-75
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a5/
%G en
%F EMJ_2020_11_4_a5
A. M. Temirkhanova; A. T. Beszhanova. Boundedness and compactness of a certain class of matrix operators with variable limits of summation. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 66-75. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a5/