@article{EMJ_2020_11_4_a4,
author = {A. Senouci and A. Zanou},
title = {Some integral inequalities for quasimonotone functions in weighted variable exponent {Lebesgue} space with $0<p(x)<1$},
journal = {Eurasian mathematical journal},
pages = {58--65},
year = {2020},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a4/}
}
TY - JOUR AU - A. Senouci AU - A. Zanou TI - Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with $0 JO - Eurasian mathematical journal PY - 2020 SP - 58 EP - 65 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a4/ LA - en ID - EMJ_2020_11_4_a4 ER -
A. Senouci; A. Zanou. Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with $0
[1] Math. Notes, 84:3 (2008), 303–313 | DOI | DOI | MR | Zbl
[2] R. A. Bandaliev, “On Hardy-type inequalities in weighted variable exponent Lebesgue spaces for $0
1$”, Eurasian Math. Journal, 4:4 (2013), 5–16 | MR | Zbl[3] J. Bergh, V. Burenkov, L. E. Persson, “Best constants in reversed Hardy's inequalities for quasimonotone functions”, Acta Sci. Math. (Szeged), 59 (1994), 223–241 | MR
[4] V. I. Burenkov, Function spaces. Main integral inequalities related to the Lebesgue spaces, Publishing house of the Peoples' Friendship University of Russia, M., 1989, 96 pp. (in Russian)
[5] Proc. Steklov Inst. Math., 194:4 (1993), 59–63 | MR | Zbl
[6] W. Orlicz, “Uber konjugierte Exponentenfolgen”, Stud. Math., 3 (1931), 200–212 | DOI
[7] M. Rúžička, Electrorheological fluids : modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000 | MR | Zbl
[8] S. G. Samko, “Differentiation and integration of variable order and the variable exponent Lebesgue spaces”, Proc. Inter. Conf. “Operator theory for complex and hypercomplex analysis” (Mexico, 1994), Contemp. Math., 212, 1998, 203–219 | DOI | MR | Zbl
[9] Math. USSR, Izv., 29 (1987), 33–66 | DOI | MR | Zbl
[10] V. V. Zhikov, “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl