Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with $0$
Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 58-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to obtain some weighted Hardy's inequalities for quasi-monotone functions in weighted variable exponent Lebesgue space with $0$.
@article{EMJ_2020_11_4_a4,
     author = {A. Senouci and A. Zanou},
     title = {Some integral inequalities for quasimonotone functions in weighted variable exponent {Lebesgue} space with $0<p(x)<1$},
     journal = {Eurasian mathematical journal},
     pages = {58--65},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a4/}
}
TY  - JOUR
AU  - A. Senouci
AU  - A. Zanou
TI  - Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with $0
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 58
EP  - 65
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a4/
LA  - en
ID  - EMJ_2020_11_4_a4
ER  - 
%0 Journal Article
%A A. Senouci
%A A. Zanou
%T Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with $0
%J Eurasian mathematical journal
%D 2020
%P 58-65
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a4/
%G en
%F EMJ_2020_11_4_a4
A. Senouci; A. Zanou. Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with $0
                  
                

[1] Math. Notes, 84:3 (2008), 303–313 | DOI | DOI | MR | Zbl

[2] R. A. Bandaliev, “On Hardy-type inequalities in weighted variable exponent Lebesgue spaces for $0

1$”, Eurasian Math. Journal, 4:4 (2013), 5–16 | MR | Zbl

[3] J. Bergh, V. Burenkov, L. E. Persson, “Best constants in reversed Hardy's inequalities for quasimonotone functions”, Acta Sci. Math. (Szeged), 59 (1994), 223–241 | MR

[4] V. I. Burenkov, Function spaces. Main integral inequalities related to the Lebesgue spaces, Publishing house of the Peoples' Friendship University of Russia, M., 1989, 96 pp. (in Russian)

[5] Proc. Steklov Inst. Math., 194:4 (1993), 59–63 | MR | Zbl

[6] W. Orlicz, “Uber konjugierte Exponentenfolgen”, Stud. Math., 3 (1931), 200–212 | DOI

[7] M. Rúžička, Electrorheological fluids : modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000 | MR | Zbl

[8] S. G. Samko, “Differentiation and integration of variable order and the variable exponent Lebesgue spaces”, Proc. Inter. Conf. “Operator theory for complex and hypercomplex analysis” (Mexico, 1994), Contemp. Math., 212, 1998, 203–219 | DOI | MR | Zbl

[9] Math. USSR, Izv., 29 (1987), 33–66 | DOI | MR | Zbl

[10] V. V. Zhikov, “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl