Some classes of operators in general Morrey-type spaces
Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 35-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we continue the study of general Morrey spaces using a general rearrangement invariant space as a basic space, and a general ideal space as an outer space. Here we consider some classes of positively homogeneous monotone operators from general rearrangement invariant spaces to general Morrey spaces and obtain the estimates for their norms. This approach covers many operators of analysis, such as the embedding and symmetrization operators, Hardy-Littlewood maximal operators, generalized Riesz potentials, Hardy-type operators.
@article{EMJ_2020_11_4_a2,
     author = {M. L. Goldman and E. G. Bakhtigareeva},
     title = {Some classes of operators in general {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {35--44},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a2/}
}
TY  - JOUR
AU  - M. L. Goldman
AU  - E. G. Bakhtigareeva
TI  - Some classes of operators in general Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 35
EP  - 44
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a2/
LA  - en
ID  - EMJ_2020_11_4_a2
ER  - 
%0 Journal Article
%A M. L. Goldman
%A E. G. Bakhtigareeva
%T Some classes of operators in general Morrey-type spaces
%J Eurasian mathematical journal
%D 2020
%P 35-44
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a2/
%G en
%F EMJ_2020_11_4_a2
M. L. Goldman; E. G. Bakhtigareeva. Some classes of operators in general Morrey-type spaces. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 35-44. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a2/

[1] E. G. Bakhtigareeva, M. L. Goldman, “Construction of an optimal envelope for a cone of nonnegative functions with monotonicity properties”, Proc. Steklov Inst. Math., 293 (2016), 37–55 | DOI | MR | Zbl

[2] C. Bennett, R. Sharpley, “Interpolation of operators”, Pure and Applied Mathematics, 129, Acad. Press Inc., Boston, MA, 1988 | MR | Zbl

[3] N. A. Bokayev, M. L. Gol'dman, G. Zh. Karshygina, “Cones of functions with monotonicity conditions for generalized Bessel and Riesz potentials”, Mathematical Notes, 104:3-4 (2018), 348–363 | DOI | MR | Zbl

[4] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. Journal, 3:3 (2012), 11–32 | MR | Zbl

[5] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. Journal, 4:1 (2013), 21–45 | MR | Zbl

[6] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafaev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Var. Elliptic Equ., 55:8–10 (2010), 739–758 | DOI | MR | Zbl

[7] V. I. Burenkov, M. L. Goldman, “Necessary and sufficient conditions for the Boundedness of the maximal operator from Lebesgue spaces to Morrey-type spaces”, Mathematical Inequalities and Applications, 17:2 (2014), 401–418 | DOI | MR | Zbl

[8] V. I. Burenkov, V. S. Guliyev, “Necessary and sufficient conditions for the boundedness of the Riesz potentials in local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl

[9] V. I. Burenkov, E. D. Nursultanov, D. K. Chigambaeva, “Description of the interpolation spaces for a pair of local Morrey-type spaces and their generalizations”, Proc. Steklov Inst. Math., 284 (2014), 97–128 | DOI | MR | Zbl

[10] V. I. Burenkov, T. V. Tararykova, “An analog of Young's inequality for convolutions of functions for general Morreytype spaces”, Proc. Steklov Inst. Math., 293 (2016), 107–126 | DOI | MR | Zbl

[11] M. L. Goldman, “On the cones of rearrangements for generalized Bessel and Riesz potentials”, Complex Var. Elliptic Equ., 55:8-10 (2010), 817–832 | DOI | MR | Zbl

[12] M. L. Goldman, “Some constructive criteria of optimal embeddings for potentials”, Complex Var. Elliptic Equ., 56:10–11 (2011), 885–903 | DOI | MR | Zbl

[13] M. L. Goldman, E. G. Bakhtigareeva, “Some general properties of operators in Morrey-type spaces”, Springer Proc. in Mathematics and Statistics, 291, 2019, 3–34 | DOI | MR

[14] M. L. Goldman, E. G. Bakhtigareeva, “Application of general approach to the theory of Morrey-type spaces”, Math. Methods in Applied Sciences, 2020, 1–13 | DOI | MR

[15] Y. Komori-Furuya, K. Matsuoka, “Fractional integrals in weighted Morrey spaces”, Math. Inequal. Appl., 19:3 (2016), 969–980 | MR | Zbl

[16] Y. Komori-Furuya, K. Matsuoka, E. Nakai, Y. Sawano, “Integrals operators on Morrey Campanato spaces”, Rev. Mat. Complut., 26 (2013), 1–32 | DOI | MR | Zbl

[17] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, American Math. Soc., Providence, R.I., 1982 | MR