Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_4_a2, author = {M. L. Goldman and E. G. Bakhtigareeva}, title = {Some classes of operators in general {Morrey-type} spaces}, journal = {Eurasian mathematical journal}, pages = {35--44}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a2/} }
M. L. Goldman; E. G. Bakhtigareeva. Some classes of operators in general Morrey-type spaces. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 35-44. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a2/
[1] E. G. Bakhtigareeva, M. L. Goldman, “Construction of an optimal envelope for a cone of nonnegative functions with monotonicity properties”, Proc. Steklov Inst. Math., 293 (2016), 37–55 | DOI | MR | Zbl
[2] C. Bennett, R. Sharpley, “Interpolation of operators”, Pure and Applied Mathematics, 129, Acad. Press Inc., Boston, MA, 1988 | MR | Zbl
[3] N. A. Bokayev, M. L. Gol'dman, G. Zh. Karshygina, “Cones of functions with monotonicity conditions for generalized Bessel and Riesz potentials”, Mathematical Notes, 104:3-4 (2018), 348–363 | DOI | MR | Zbl
[4] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. Journal, 3:3 (2012), 11–32 | MR | Zbl
[5] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. Journal, 4:1 (2013), 21–45 | MR | Zbl
[6] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafaev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Var. Elliptic Equ., 55:8–10 (2010), 739–758 | DOI | MR | Zbl
[7] V. I. Burenkov, M. L. Goldman, “Necessary and sufficient conditions for the Boundedness of the maximal operator from Lebesgue spaces to Morrey-type spaces”, Mathematical Inequalities and Applications, 17:2 (2014), 401–418 | DOI | MR | Zbl
[8] V. I. Burenkov, V. S. Guliyev, “Necessary and sufficient conditions for the boundedness of the Riesz potentials in local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl
[9] V. I. Burenkov, E. D. Nursultanov, D. K. Chigambaeva, “Description of the interpolation spaces for a pair of local Morrey-type spaces and their generalizations”, Proc. Steklov Inst. Math., 284 (2014), 97–128 | DOI | MR | Zbl
[10] V. I. Burenkov, T. V. Tararykova, “An analog of Young's inequality for convolutions of functions for general Morreytype spaces”, Proc. Steklov Inst. Math., 293 (2016), 107–126 | DOI | MR | Zbl
[11] M. L. Goldman, “On the cones of rearrangements for generalized Bessel and Riesz potentials”, Complex Var. Elliptic Equ., 55:8-10 (2010), 817–832 | DOI | MR | Zbl
[12] M. L. Goldman, “Some constructive criteria of optimal embeddings for potentials”, Complex Var. Elliptic Equ., 56:10–11 (2011), 885–903 | DOI | MR | Zbl
[13] M. L. Goldman, E. G. Bakhtigareeva, “Some general properties of operators in Morrey-type spaces”, Springer Proc. in Mathematics and Statistics, 291, 2019, 3–34 | DOI | MR
[14] M. L. Goldman, E. G. Bakhtigareeva, “Application of general approach to the theory of Morrey-type spaces”, Math. Methods in Applied Sciences, 2020, 1–13 | DOI | MR
[15] Y. Komori-Furuya, K. Matsuoka, “Fractional integrals in weighted Morrey spaces”, Math. Inequal. Appl., 19:3 (2016), 969–980 | MR | Zbl
[16] Y. Komori-Furuya, K. Matsuoka, E. Nakai, Y. Sawano, “Integrals operators on Morrey Campanato spaces”, Rev. Mat. Complut., 26 (2013), 1–32 | DOI | MR | Zbl
[17] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, American Math. Soc., Providence, R.I., 1982 | MR