Correct singular perturbations of the Laplace operator
Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 25-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of the Laplace operator when the potential is a singular generalized function and plays the role of a singular perturbation of the Laplace operator. Abstract theorem obtained earlier by B. N. Biyarov and G. K. Abdrasheva can be applied in this case. The main purpose of the paper is studying the related spectral problems. Singular perturbations for differential operators have been studied by many authors for the mathematical substantiation of solvable models of quantum mechanics, atomic physics, and solid state physics. In all those cases, the problems were self-adjoint. In this paper, we consider non-self-adjoint singular perturbation problems. A new method has been developed that allows investigating the considered problems.
@article{EMJ_2020_11_4_a1,
     author = {B. N. Biyarov and D. L. Svistunov and G. K. Abdrasheva},
     title = {Correct singular perturbations of the {Laplace} operator},
     journal = {Eurasian mathematical journal},
     pages = {25--34},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a1/}
}
TY  - JOUR
AU  - B. N. Biyarov
AU  - D. L. Svistunov
AU  - G. K. Abdrasheva
TI  - Correct singular perturbations of the Laplace operator
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 25
EP  - 34
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a1/
LA  - en
ID  - EMJ_2020_11_4_a1
ER  - 
%0 Journal Article
%A B. N. Biyarov
%A D. L. Svistunov
%A G. K. Abdrasheva
%T Correct singular perturbations of the Laplace operator
%J Eurasian mathematical journal
%D 2020
%P 25-34
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a1/
%G en
%F EMJ_2020_11_4_a1
B. N. Biyarov; D. L. Svistunov; G. K. Abdrasheva. Correct singular perturbations of the Laplace operator. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 25-34. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a1/

[1] B. A. Barnes, “Common operator properties of the linear operators RS and SR”, Proceedings of the American Mathematical Society, 126:4 (1998), 1055–1061 | DOI | MR | Zbl

[2] Differ. Equations, 30:12 (1994), 1863–1868 | MR | Zbl

[3] B. N. Biyarov, G. K. Abdrasheva, “Bounded perturbations of the correct restrictions and extensions”, Proc. AIP Conf., 1759 (2016), 020116 | DOI

[4] B. N. Biyarov, G. K. Abdrasheva, “Relatively bounded perturbations of correct restrictions, extensions of linear operators”, FAIA 2017, Springer Proceedings in Mathematics Statistics, 216, eds. T. Sh. Kalmenov et al., Springer, 2017, 213–221 | DOI | MR | Zbl

[5] L. Hörmander, The analysis of linear partial differential operators, v. I, Springer-Verlag, Berlin, 1983 | MR

[6] T. Sh. Kal'menov, M. Otelbaev, “Boundary criterion for integral operators”, Dokl. Math., 93 (2016), 58–61 | DOI | MR | Zbl

[7] B. E. Kanguzhin, “Changes in a finite part of the spectrum of the Laplace operator under delta-like perturbations”, Differential Equations, 55:10 (2019), 1328–1335 | DOI | MR | Zbl

[8] B. E. Kanguzhin, K. S. Tulenov, “Singular perturbations of Laplace operator and their resolvents”, Complex Variables and Elliptic Equations, 65:9 (2020), 1433–1444 | DOI | MR

[9] B. Kanguzhin, L. Zhapsarbayeva, Z. Madibaiuly, “Lagrange formula for differential operators and self-adjoint restrictions of the maximal operator on a tree”, Eurasian Mathematical Journal, 10:1 (2019), 16–29 | DOI | MR | Zbl

[10] B. K. Kokebaev, M. Otelbaev, A. N. Shynibekov, “About expansions and restrictions of operators in Banach space”, Uspekhi Matem. Nauk, 37:4 (1982), 116–123 (in Russian) | MR

[11] A. T. Taldykin, Elements of applied functional analysis, Vysshaya Shkola, M., 1982 (in Russian) | MR | Zbl

[12] American Mathematical Society Transl. II, 24 (1963), 107–172 | MR | MR | Zbl