On $\mathbb{R}$-linear conjugation problem on the unit circle
Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 79-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of finding a solution to the $\mathbb{R}$-linear conjugation problem on the unit circle is proposed. The problem is studied under the assumption that its main coefficient is a segment of the Fourier series. The applied method is based on reducing the considered problem to the vector-matrix boundary value problem and applying the recently suggested generalization of G. N. Chebotarev's approach to the factorization of triangular matrix functions to its matrix coefficient.
@article{EMJ_2020_11_3_a6,
     author = {L. Primachuk and S. Rogozin and M. Dubatovskaya},
     title = {On $\mathbb{R}$-linear conjugation problem on the unit circle},
     journal = {Eurasian mathematical journal},
     pages = {79--88},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a6/}
}
TY  - JOUR
AU  - L. Primachuk
AU  - S. Rogozin
AU  - M. Dubatovskaya
TI  - On $\mathbb{R}$-linear conjugation problem on the unit circle
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 79
EP  - 88
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a6/
LA  - en
ID  - EMJ_2020_11_3_a6
ER  - 
%0 Journal Article
%A L. Primachuk
%A S. Rogozin
%A M. Dubatovskaya
%T On $\mathbb{R}$-linear conjugation problem on the unit circle
%J Eurasian mathematical journal
%D 2020
%P 79-88
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a6/
%G en
%F EMJ_2020_11_3_a6
L. Primachuk; S. Rogozin; M. Dubatovskaya. On $\mathbb{R}$-linear conjugation problem on the unit circle. Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 79-88. http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a6/

[1] V. M. Adukov, “Wiener-Hopf factorization of meromorphic matrix-functions”, St. Petersburg Math. J., 4:1 (1993), 51–69 | MR

[2] V. M. Adukov, A. A. Patrushev, “On explicit and exact solutions of the Markushevich problem on the circle”, Izv. Saratov State University. New series, 11:2 (2011), 9–20 (in Russian)

[3] G. N. Chebotarev, “Partial indices of the Riemann boundary value problem with triangular matrix of the second order”, Uspekhi Mat. Nauk, XI:3 (1956), 192–202 | MR

[4] F. D. Gakhov, Boundary value problems, 3rd ed., Nauka, M., 1977 (in Russian) | MR | Zbl

[5] G. S. Litvinchuk, “Two theorems on stability of partial indices and their application”, Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 12, 47–57 (in Russian) | MR | Zbl

[6] G. S. Litvinchuk, Solvability theory of boundary value problems and singular integral equations with shift, Mathematics and its Applications, 523, Kluwer Academic Publishers, Dordrecht, 2000 | MR | Zbl

[7] G. S. Litvinchuk, I. M. Spitkovsky, Factorization of measurable matrix functions, Birkhäuser, Basel–Boston, 1987 | MR | Zbl

[8] A. I. Markushevich, “On a boundary value problem of the theory of analytic functions”, Uch. Zap. Moscow Univ. I, 100 (1946), 20–30 | MR

[9] N. I. Muskhelishvili, Singular integral equations, 3rd ed., Nauka, M., 1968 (in Russian) | MR | Zbl

[10] V. V. Mityushev, S. V. Rogosin, Constructive methods for linear and nonlinear boundary value problems for analytic functions: theory and applications, Monographs and surveys in pure and applied mathematics, 108, Chapman Hall / CRC PRESS, Boca Raton–London–New York–Washington, 1999 | MR

[11] L. Primachuk, S. Rogosin, “Factorization of triangular matrix-functions of an arbitrary order”, Lobachevskii J. Math., 39:6 (2018), 809–817 | DOI | MR | Zbl

[12] S. Rogosin, G. Mishuris, “Constructive methods for factorization of matrix-functions”, IMA J. Appl. Math., 81:2 (2016), 365–391 | DOI | MR | Zbl

[13] I. Kh. Sabitov, “On general boundary value problem of linear conjugation on the circle”, Siberian Math. J., 5:1 (1964), 124–129 (in Russian) | MR | Zbl