Distributions of countable models of quite $o$-minimal Ehrenfeucht theories
Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 66-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe Rudin–Keisler preorders and distribution functions of numbers of limit models for quite $o$-minimal Ehrenfeucht theories. Decomposition formulas for these distributions are found.
@article{EMJ_2020_11_3_a5,
     author = {B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Distributions of countable models of quite $o$-minimal {Ehrenfeucht} theories},
     journal = {Eurasian mathematical journal},
     pages = {66--78},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a5/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Distributions of countable models of quite $o$-minimal Ehrenfeucht theories
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 66
EP  - 78
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a5/
LA  - en
ID  - EMJ_2020_11_3_a5
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Distributions of countable models of quite $o$-minimal Ehrenfeucht theories
%J Eurasian mathematical journal
%D 2020
%P 66-78
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a5/
%G en
%F EMJ_2020_11_3_a5
B. Sh. Kulpeshov; S. V. Sudoplatov. Distributions of countable models of quite $o$-minimal Ehrenfeucht theories. Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 66-78. http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a5/

[1] B. S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, The Journal of Symbolic Logic, 66 (2001), 1382–1414 | DOI | MR | Zbl

[2] M. Benda, “Remarks on countable models”, Fund. Math., 81:2 (1974), 107–119 | DOI | MR | Zbl

[3] S. S. Goncharov, “On autostability of almost prime models relative to strong constructivizations”, Russian Mathematical Surveys, 65:5 (2010), 901–935 | DOI | MR | Zbl

[4] K. Zh. Kudaibergenov, “On finitely generated models”, Siberian Math. J., 27:2 (1986), 208–209 | MR

[5] B. Sh. Kulpeshov, “Convexity rank and orthogonality in weakly o-minimal theories”, News of the National Academy of Sciences of the Republic of Kazakhstan, series physics-mathematics, 227 (2003), 26–31 | MR

[6] B. Sh. Kulpeshov, “Countably categorical quite o-minimal theories”, Journal of Mathematical Sciences, 188:4 (2013), 387–397 | DOI | MR | Zbl

[7] B. Sh. Kulpeshov, S. V. Sudoplatov, “Vaught's conjecture for quite o-minimal theories”, Annals of Pure and Applied Logic, 168:1 (2017), 129–149 | DOI | MR | Zbl

[8] D. Lascar, “Ordre de Rudin-Keisler et poids dans les theories stables”, Z. Math. Logic Grundlagen Math., 28 (1982), 413–430 | DOI | MR | Zbl

[9] H. D. Macpherson, D. Marker, C. Steinhorn, “Weakly o-minimal structures and real closed fields”, Transactions of the American Mathematical Society, 352 (2000), 5435–5483 | DOI | MR | Zbl

[10] L. Mayer, “Vaught's conjecture for o-minimal theories”, J. Symbolic Logic, 53:1 (1988), 146–159 | DOI | MR | Zbl

[11] T. S. Millar, “Decidable Ehrenfeucht theories”, Proc. Sympos. Pure Math., 42 (1985), 311–321 | DOI | MR | Zbl

[12] A. Pillay, “A note on finitely generated models”, J. Symbolic Logic, 48:1 (1983), 163–166 | DOI | MR | Zbl

[13] A. Pillay, C. Steinhorn, “Definable sets in ordered structures. I”, Trans. Amer. Math. Soc., 195:2 (1986), 565–592 | DOI | MR

[14] S. V. Sudoplatov, “Complete theories with finitely many countable models. I”, Algebra and Logic, 43:1 (2004), 62–69 | DOI | MR | Zbl

[15] S. V. Sudoplatov, “Inessential combinations of small theories”, Bulletin of Irkutsk State University. Series Mathematics, 2:2 (2009), 158–169

[16] S. V. Sudoplatov, “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sciences, 169:5 (2010), 680–695 | DOI | MR | Zbl

[17] S. V. Sudoplatov, E. V. Ovchinnikova, Discrete mathematics, Textbook, Urait, 2020, 280 pp.

[18] S. V. Sudoplatov, Classification of countable models of complete theories, v. 1, Novosibirsk State Technical University Publishing House, Novosibirsk, 2018

[19] S. V. Sudoplatov, Classification of countable models of complete theories, v. 2, Novosibirsk State Technical University Publishing House, Novosibirsk, 2018

[20] P. Tanović, “Theories with constants and three countable models”, Archive for Math. Logic, 46:5–6 (2007), 517–527 | DOI | MR | Zbl

[21] R. Vaught, “Denumerable models of complete theories”, Infinistic Methods, Pergamon, London, 1961, 303–321 | MR

[22] R. E. Woodrow, Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976, 99 pp. | MR