On extended Rothe's method for nonlinear parabolic variational inequalities in noncylindrical domains
Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 51-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, some nonlinear parabolic variational inequalities in noncylindrical domains are considered. Using extended Rothe's method introduced and developed in [10] an approximate solution is constructed. Existence and uniqueness results are proved. Moreover, we present some further results and comments related to the main result.
@article{EMJ_2020_11_3_a4,
     author = {G. Kulieva and K. Kuliev},
     title = {On extended {Rothe's} method for nonlinear parabolic variational inequalities in noncylindrical domains},
     journal = {Eurasian mathematical journal},
     pages = {51--65},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a4/}
}
TY  - JOUR
AU  - G. Kulieva
AU  - K. Kuliev
TI  - On extended Rothe's method for nonlinear parabolic variational inequalities in noncylindrical domains
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 51
EP  - 65
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a4/
LA  - en
ID  - EMJ_2020_11_3_a4
ER  - 
%0 Journal Article
%A G. Kulieva
%A K. Kuliev
%T On extended Rothe's method for nonlinear parabolic variational inequalities in noncylindrical domains
%J Eurasian mathematical journal
%D 2020
%P 51-65
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a4/
%G en
%F EMJ_2020_11_3_a4
G. Kulieva; K. Kuliev. On extended Rothe's method for nonlinear parabolic variational inequalities in noncylindrical domains. Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 51-65. http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a4/

[1] I. Bock, J. Kačur, “Application of Rothe's method to parabolic variational inequalites”, Math. Slovaca, 31:4 (1981), 429–436 | MR | Zbl

[2] J. Dasht, J. Engström, A. Kufner, L. E. Persson, “Rothe's method for parabolic equations on non-cylindrical domains”, Adv. Alg. Anal., 1:1 (2006), 1–22 | MR

[3] E. K. Essel, K. Kuliev, G. Kulieva, L-E. Persson, “On linear parabolic problems with singular coefficients in noncylindrical domains”, Int. J. Appl. Math. Sci. (IJAMS), 2008

[4] E. K. Essel, K. Kuliev, G. Kulieva, L-E. Persson, “Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence”, Appl. Math., 55:4 (2010), 305–327 | DOI | MR | Zbl

[5] J. Kačur, “Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities”, Czech. Math. J., 34:109 (1984), 92–106 | MR | Zbl

[6] A. Kufner, S. Fučík, Nonlinear differential equations, Elsevier Scientific Publishing Company, Amsterdam–Oxford–New York, 1980 | MR | Zbl

[7] A. Kufner, O. John, S. Fučík, Function spaces, Publishing House of the Czechoslovak Academy of Sciences, 1977 | MR | Zbl

[8] A. Kufner, K. Kuliev, G. Kulieva, “The transformation method for non-cylindrical parabolic problems”, Far East J. Math. Sci. (FJMS), 28:1 (2008), 17–36 | MR | Zbl

[9] K. Kuliev, Parabolic problems on noncylindrical domains — The method of Rothe, Licentiate thesis, Department of Mathematics, LuleåUniversity of Technology, 2006

[10] K. Kuliev, L. E. Persson, “An extension of Rothe's method to non-cylindrical domains”, Appl. Math., 52 (2007), 365–389 | DOI | MR | Zbl

[11] G. Kulieva, Some special problems in elliptic and parabolic variational inequalities, Licentiate thesis, 77, LuleåUniversity of Technology, 2006, 105 pp.

[12] G. Kulieva, Some special problems in elliptic and parabolic variational inequalities, PhD thesis, University of West Bohemia, Pilsen, Czech, 2007, 129 pp.

[13] J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969 | MR

[14] K. Rektorys, The method of discretization in time and partial differential equations, D. Reidel Publishing Company, 1982 | MR | Zbl

[15] K. Rektorys, Variational metods in mathematics, science and engineering, D. Reidel Publishing Company, 1980 | MR