Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_3_a1, author = {E. I. Berezhnoi}, title = {Calculation of the {Calder\'on--Lozanovskii} construction for a couple of local {Morrey} spaces}, journal = {Eurasian mathematical journal}, pages = {21--34}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a1/} }
TY - JOUR AU - E. I. Berezhnoi TI - Calculation of the Calder\'on--Lozanovskii construction for a couple of local Morrey spaces JO - Eurasian mathematical journal PY - 2020 SP - 21 EP - 34 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a1/ LA - en ID - EMJ_2020_11_3_a1 ER -
E. I. Berezhnoi. Calculation of the Calder\'on--Lozanovskii construction for a couple of local Morrey spaces. Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 21-34. http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a1/
[1] Izvestiya: Mathematics, 81:1 (2017), 1–28 | DOI | DOI | MR | Zbl
[2] E. I. Berezhnoi, “Interpolation of positive operators in the spaces $\varphi(X_0, X_1)$”, Qualitative and Approximate Methods for the Investigation of Operator Equations, Yaroslav. Gos. Univ., Yaroslavl, 1981, 3–12 (in Russian) | MR
[3] Soviet Math. (Iz. VUZ), 26:2 (1982), 107–111 | MR
[4] Functional Analysis and its Applications, 18:1 (1984), 48–50 | DOI | MR
[5] E. I. Berezhnoi, L. Maligranda, “Representation of Banach spaces and ideal factorization of operators”, Canad. J. Math., 57:5 (2005), 897–940 | DOI | MR | Zbl
[6] O. Blasco, A. Ruiz, L. Vega, “Non interpolation in Morrey-Companato and block spaces”, Ann. Scuola Norm. Super Pisa, 28:1 (1999), 31–40 | MR | Zbl
[7] Yu. A. Brudnyi, N. Ya. Krugljak, Interpolation functors and interpolation spaces, North-Holland, Amsterdam, 1991 | MR | Zbl
[8] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Mathematical Journal, 3:3 (2012), 11–32 | MR | Zbl
[9] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Mathematical Journal, 4:1 (2013), 21–45 | MR | Zbl
[10] V. I. Burenkov, D. K. Darbaeva, E. D. Nursultanov, “Description of interpolation spaces for general local Morreytype spaces”, Eurasian Mathematical Journal, 4:1 (2013), 46–53 | MR | Zbl
[11] Proceedings Steklov Inst. Math., 269 (2010), 46–56 | DOI | MR | Zbl
[12] Proceedings Steklov Inst. Math., 284 (2014), 97–128 | DOI | MR | Zbl
[13] Sb. Perevodov Matematika, 9:3 (1965), 56–129 | DOI | MR | Zbl
[14] J. Gustavsson, J. Peetre, “Interpolation of Orlicz spaces”, Studia Math., 60:1 (1977), 33–59 | DOI | MR | Zbl
[15] Pergamon Press, Oxford-Elmsford, New York, 1982 | MR | Zbl
[16] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, American Mathematical Society, Providence, 1982 | MR
[17] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. I, Sequence spaces, Springer-Verlag, Berlin–Heidelberg–New-York, 1977 | MR | Zbl
[18] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Function spaces, Springer-Verlag, Berlin–Heidelberg–New-York, 1979 | MR | Zbl
[19] G. Ya. Lozanovskii, “On some Banach lattices IV”, Siberian Math. J., 14 (1973), 97–108 | DOI | MR | Zbl
[20] L. Maligranda, Orlicz spaces, interpolation, Seminars in Math., 5, Univ. of Campinas, Campinas SP, Brazil, 1989 | MR | Zbl
[21] C. B. Morrey, “On the solution of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR
[22] V. I. Ovchinnikov, “The methods of orbits in interpolation theory”, Math. Reports, 1:2 (1984), 349–516 | MR
[23] A. Ruiz, L. Vega, “Corrigendato “Unique continuation for Schrödinger operators” and remark on interpolation in Morrey spaces”, Publ. Math. Barc., 39 (1995), 405–411 | DOI | MR | Zbl