Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_2_a7, author = {A. Minapoor}, title = {Approximate ideal connes amenability of dual {Banach} algebras and ideal connes amenability of discrete {Beurling} algebras}, journal = {Eurasian mathematical journal}, pages = {72--85}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a7/} }
TY - JOUR AU - A. Minapoor TI - Approximate ideal connes amenability of dual Banach algebras and ideal connes amenability of discrete Beurling algebras JO - Eurasian mathematical journal PY - 2020 SP - 72 EP - 85 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a7/ LA - en ID - EMJ_2020_11_2_a7 ER -
%0 Journal Article %A A. Minapoor %T Approximate ideal connes amenability of dual Banach algebras and ideal connes amenability of discrete Beurling algebras %J Eurasian mathematical journal %D 2020 %P 72-85 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a7/ %G en %F EMJ_2020_11_2_a7
A. Minapoor. Approximate ideal connes amenability of dual Banach algebras and ideal connes amenability of discrete Beurling algebras. Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 72-85. http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a7/
[1] Y. Choi, E. Samei, R. Stokke, Extension of derivations, and Connes amenability of enveloping dual Banach algebra, 17 June 2014, arXiv: 1307.6287v2 [math.FA] | MR
[2] H. G. Dales, Banach algebras, automatic continuty, Oxford Uinversity Press, 2000 | MR
[3] H. G. Dales, F. Ghahramani, A. Helemskii, “The amenability of measure algebras”, J. London Math. Soc., 66 (2002), 213–226 | MR | Zbl
[4] M. Daws, “Connes amenability of bidual and weighted semigroup algebras”, Math. Scand., 99 (2006), 217–246 | MR | Zbl
[5] M. M. Day, “Means on semigroups and groups”, Bull. Amer. Math. Soc., 55 (1949), 1054–1055
[6] U. Haagerup, “All nuclear C-algebras are amenable”, Invent. Math., 74 (1983), 305–319 | MR | Zbl
[7] E. G. Effros, “Amenability and virtual diagonals for von Neumann algebras”, J. Funct. Anal., 78 (1988), 137–156 | MR
[8] M. Eshaghi Gordji, T. Yazdanpanah, “Derivations into duals of ideals of Banach algebras”, Proc. Ind. Acad. Sci. (Math. Sci.), 114:4 (2004), 399–408 | MR | Zbl
[9] G. H. Esslamzadeh, B. Shojaee, Approximate Connes amenability of dual Banach algebras, 24 Jan 2011, arXiv: 0908.3566v2 [math.FA] | MR
[10] N. Grqnbaek, “Amenability of weighted discrete convolution algebras on cancellative semigroup”, Proc. Roy. Soc. Edinburgh Sect. A, 110 (1988), 351–360 | MR
[11] B. E. Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, 127, American Mathematical Soc., 1972, 96 pp. | MR | Zbl
[12] B. E. Johnson, R. V. Kadison, J. R. Ringrose, “Cohomology of operator algebras III”, Bull. Soc. Math. Fr., 100 (1972), 73–96 | MR | Zbl
[13] J. L. Kelly, General topology, American Book, Von Nostrand Reinhold, 1968
[14] A. Minapoor, A. Bodaghi, D. Ebrahimi Bagha, “Ideal Connes-amenability of dual Banach algebras”, Mediterr. J. Math., 14:174 (2017) | DOI | MR | Zbl
[15] S. Naseri, “Approximate amenability of weighted group algebras”, International Mathematical Forum, 6:2 (2011), 49–56 | MR | Zbl
[16] V. Runde, “A Connes-amenable, dual Banach algebra need not have a normal, virtual diagonal”, Trans. Amer. Math. Soc., 358:1 (2005), 391–402 | MR
[17] V. Runde, “Amenability for dual Banach algebras”, Studia Math., 148 (2001), 47–66 | MR | Zbl
[18] V. Runde, Lectures on amenability, Lecture Notes in Mathematics, 1774, Springer-Verlag, Berlin–Heidelberg–New York, 2002 | MR | Zbl
[19] V. Runde, “Connes-amenability and normal, virtual diagonals for measure algebras (II)”, Bull. Austral. Math. Soc., 68 (2003), 325–328 | MR | Zbl
[20] V. Shepelska, Weak amenability of weighted group algebras and of their centres, PhD. thesis, University of Manitoba, 2014 http://hdl.handle.net/1993/24313
[21] A. Shirinkalam, A. Pourabbas, On approximate Connes amenability of enveloping dual Banach algebras, 24 January 2015, arXiv: 1501.06028v1 [math.FA] | MR | Zbl
[22] J. Von Neumann, “Zur allgemeinen theories des maßes”, Fund. Math., 13 (1929), 73–116 | Zbl
[23] Y. Zhang, “Weak amenability of commutative beurling algebras”, Proc. Amer. Math. Soc., 142 (2014), 1649–1661 | MR | Zbl