On stability of bases in Hilbert spaces
Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 65-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Hilbert space we consider a minimal and complete system asymptotically close to an almost normed unconditional basis and find conditions under which such system also forms an unconditional basis. The proof of this statement is based on a new criterion of compactness of linear operators proposed in this paper.
@article{EMJ_2020_11_2_a6,
     author = {E. A. Larionov},
     title = {On stability of bases in {Hilbert} spaces},
     journal = {Eurasian mathematical journal},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a6/}
}
TY  - JOUR
AU  - E. A. Larionov
TI  - On stability of bases in Hilbert spaces
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 65
EP  - 71
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a6/
LA  - en
ID  - EMJ_2020_11_2_a6
ER  - 
%0 Journal Article
%A E. A. Larionov
%T On stability of bases in Hilbert spaces
%J Eurasian mathematical journal
%D 2020
%P 65-71
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a6/
%G en
%F EMJ_2020_11_2_a6
E. A. Larionov. On stability of bases in Hilbert spaces. Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 65-71. http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a6/

[1] N. K. Bari, “Sur les systems completes de functions orthogonal”, Math. Sb., 14 (1944), 51–108 | MR

[2] N. K. Bari, “Biorthogonal systems in a Hilbert space”, Proc. MSU, 148 (1951), 69–107 | MR

[3] N. Dunford, J. T. Schwartz, Linear operators. Spectral theory, New York–London, 1963 | MR | Zbl

[4] I.M. Gelfand, “Remarks to paper N. K. Bari “Biorthogonal systems and bases in a Hilbert space””, Proc. MSU, 148 (1951), 224–225 | MR

[5] I. Z. Gochberg, M. G. Krein, Introduction to theory of linear non-selfadjoint operators, Nauka, M., 1965 | MR

[6] G. M. Henkin, “On a stability of the unconditional basis in an uniformly convex space”, Uspekhi Math. Sci., 18:6 (1963), 219–224 | MR

[7] Yu. A. Kazmin, “On bases and complete systems in a Hilbert space”, Math. Sb., 42:4 (1957), 513–522 | MR | Zbl

[8] M. G. Krein, “On BariTs basis of a Hilberts space”, Uspekhi Math. Sci., 12:3 (1957), 333–341 | MR

[9] M. G. Krein, D. P. Milman, M. A. Rutman, “On a property of basis in a Banach space”, Proc. Math. Soc. Kharkov, 16 (1940), 106–110 | MR

[10] E. R. Lorch, “Bicontinuous linear transformations in certain vector spaces”, Bull. Amer. Math. Soc., 45:8 (1939), 564–569 | MR

[11] L. A. Lusternik, V. I. Sobolev, Elements of functional analysis, M., 1965, 520 pp. | MR

[12] V. D. Milman, “On the perturbations of the sequences in a Banach space”, Sibirsk. Math. J., 6:2 (1965), 398–412 | MR | Zbl

[13] V. D. Milman, “Geometric theory of Banach's space”, Uspekhi Math. Sci., 25:3 (1970), 114–174 | MR

[14] A. I. Plesner, Spectral theory of linear operators, Nauka, M., 1965 | MR | Zbl

[15] B. E. Weyz, “On certain properties of a stability of the basis”, Dokl. Ac. Sci. USSR, 158:1 (1964), 13–16