On solvability of one infinite system of nonlinear functional equations in the theory of epidemics
Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 52-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, an infinite system of nonlinear functional equations arising in the theory of epidemics is investigated. We prove a constructive theorem on the existence of a nontrivial, continuous and bounded solution of the system. In addition, some asymptotic properties of the constructed solution are studied. We conclude the study by applying our theoretical results to two concrete examples arising in spatial-temporal spread of epidemics and in $p$-adic string theory.
@article{EMJ_2020_11_2_a5,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
     title = {On solvability of one infinite system of nonlinear functional equations in the theory of epidemics},
     journal = {Eurasian mathematical journal},
     pages = {52--64},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a5/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
TI  - On solvability of one infinite system of nonlinear functional equations in the theory of epidemics
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 52
EP  - 64
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a5/
LA  - en
ID  - EMJ_2020_11_2_a5
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%T On solvability of one infinite system of nonlinear functional equations in the theory of epidemics
%J Eurasian mathematical journal
%D 2020
%P 52-64
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a5/
%G en
%F EMJ_2020_11_2_a5
A. Kh. Khachatryan; Kh. A. Khachatryan. On solvability of one infinite system of nonlinear functional equations in the theory of epidemics. Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 52-64. http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a5/

[1] O. Diekmann, “Threshold and travelling waves for the geographical spread of infection”, Journal of Math. Biology, 6 (1978), 109–130 | MR | Zbl

[2] O. Diekmann, “Limiting behaviour in an epidemic model”, Journal of non. Anal. Theory Math. Appl., 1:1 (1977), 459–470 | MR | Zbl

[3] A. Kh. Khachatryan, Kh. A. Khachatryan, “On the solvability of some nonlinear integral equations in problems of epidemic spread”, Proc. Steklov Inst. Math., 306 (2019), 271–287 | MR | Zbl

[4] Kh. A. Khachatryan, “On the solvability of a boundary volume problem in p-adic string theory”, Trans. Moscow Math. Soc., 79:1 (2018), 101–115 | MR | Zbl

[5] N. B. Yengibaryan, A. Kh. Khachatryan, “Some convolution-type integral equations in kinetic theory”, Comp. Mathematics and Mathematical Physics, 45:11 (1998), 452–467 | MR

[6] V. S. Vladimirov, Ya. I. Volovich, “Nonlinear dynamics equation in p-adic string theory”, Theoretical and Mathematical Physics, 138:3 (2004), 297–309 | MR | Zbl

[7] Kh. A. Khachatryan, “On the solvability of certain classes of nonlinear integral equations in p-adic string theory”, Izv. Math., 82:2 (2018), 407–427 | MR | Zbl