Hyperbolicity with weight of polynomials in terms of comparing their power
Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 40-51

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given completely regular Newton polyhedron $\mathfrak{R}$, and a given vector $N\in\mathbb{R}^n$, we give conditions under which a weakly hyperbolic polynomial (with respect to the vector $N$) $P(\xi)=P(\xi_1,\dots,\xi_n)$ is $\mathfrak{R}$-hyperbolic (with respect to the vector $N$). For polynomials of two variables, the largest number $s >0$ is determined for which an $\mathfrak{R}$-hyperbolic (with respect to the vector $N$) polynomial is $s$-hyperbolic.
@article{EMJ_2020_11_2_a4,
     author = {H. G. Ghazaryan and V. N. Margaryan},
     title = {Hyperbolicity with weight of polynomials in terms of comparing their power},
     journal = {Eurasian mathematical journal},
     pages = {40--51},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a4/}
}
TY  - JOUR
AU  - H. G. Ghazaryan
AU  - V. N. Margaryan
TI  - Hyperbolicity with weight of polynomials in terms of comparing their power
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 40
EP  - 51
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a4/
LA  - en
ID  - EMJ_2020_11_2_a4
ER  - 
%0 Journal Article
%A H. G. Ghazaryan
%A V. N. Margaryan
%T Hyperbolicity with weight of polynomials in terms of comparing their power
%J Eurasian mathematical journal
%D 2020
%P 40-51
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a4/
%G en
%F EMJ_2020_11_2_a4
H. G. Ghazaryan; V. N. Margaryan. Hyperbolicity with weight of polynomials in terms of comparing their power. Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 40-51. http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a4/