Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_2_a3, author = {A. G. Baskakov and I. A. Krishtal and N. B. Uskova}, title = {On the spectral analysis of a differential operator with an involution and general boundary conditions}, journal = {Eurasian mathematical journal}, pages = {30--39}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a3/} }
TY - JOUR AU - A. G. Baskakov AU - I. A. Krishtal AU - N. B. Uskova TI - On the spectral analysis of a differential operator with an involution and general boundary conditions JO - Eurasian mathematical journal PY - 2020 SP - 30 EP - 39 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a3/ LA - en ID - EMJ_2020_11_2_a3 ER -
%0 Journal Article %A A. G. Baskakov %A I. A. Krishtal %A N. B. Uskova %T On the spectral analysis of a differential operator with an involution and general boundary conditions %J Eurasian mathematical journal %D 2020 %P 30-39 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a3/ %G en %F EMJ_2020_11_2_a3
A. G. Baskakov; I. A. Krishtal; N. B. Uskova. On the spectral analysis of a differential operator with an involution and general boundary conditions. Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 30-39. http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a3/
[1] A. G. Baskakov, “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3, 421–444 | MR | Zbl
[2] A. G. Baskakov, “Estimates for Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations”, Sb. Math., 205:8 (2015), 1049–1086 | MR
[3] A. G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Siberian Math. Journ., 24:1 (1983), 17–32 | MR
[4] A. G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Izv. Math., 45:1 (1995), 1–31 | MR
[5] A. G. Baskakov, A. V. Derbushev, A. O. Scherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | MR | Zbl
[6] A. G. Baskakov, I. A. Krishtal, E. Yu. Romanova, “Spectral analysis of a differential operator with an involution”, J. Evolut. Equat., 17 (2017), 669–684 | MR | Zbl
[7] A. G. Baskakov, I. A. Krishtal, N. B. Uskova, “Linear differential operator with an involution as a generator of an operator group”, Operators and Matrices, 12:3 (2018), 723–756 | MR | Zbl
[8] A. G. Baskakov, I. A. Krishtal, N. B. Uskova, “Similarity techniques in the spectral analysis of perturbed operator matrices”, J. Math. Anal. Appl., 2019, no. 2, 930–960 | DOI | MR | Zbl
[9] A. G. Baskakov, D. M. Polyakov, “The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential”, Sb. Math., 208:1 (2017), 1–43 | MR | Zbl
[10] A. G. Baskakov, N. B. Uskova, “A generalized Fourier method for the system of first-order differential equations with an involution and a group of operators”, Diff. Equat., 54:2 (2018), 276–280 | MR | Zbl
[11] A. G. Baskakov, N. B. Uskova, “Fourier method for first order differential equations with an involution and for groups of operators”, Ufa Math. Journ., 10:3 (2018), 11–34 | MR
[12] A. G. Baskakov, N. B. Uskova, “Spectral properties of the differential operators with an involution and operator groups”, Diff. Equat., 54:9 (2018), 277–281 | MR | Zbl
[13] M. Sh. Burlutskaya, A. P. Khromov, “Dirac operator with a potential of special form and with the periodic boundary conditions”, Diff. Equat., 54:5 (2018), 586–595 | MR | Zbl
[14] M. Sh. Burlutskaya, A. P. Khromov, “Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution”, Comput. Math. and Math. Phys., 51:12 (2011), 2102–2114 | MR | Zbl
[15] M. Sh. Burlutskaya, A. P. Khromov, “Functional-differential operators with involution and Dirac operators with periodic boundary conditions”, Dokl. Math., 89:1 (2014), 8–10 | MR | Zbl
[16] M. Sh. Burlutskaya, A. P. Khromov, “Mixed problem for simplest hyperbolic first order equations with involution”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:1 (2014), 10–20 | MR | Zbl
[17] M. Sh. Burlutskaya, A. P. Khromov, “Mixed problems for first-order hyperbolic equations with involution”, Dokl. Math., 84:3 (2011), 783–786 | MR | Zbl
[18] A. Cabada, F. A.F. Tojo, “Existence results for a linear equations with reflection, non-constant coefficient and periodic boundary conditions”, J. Math. Anal. Appl., 412:1 (2014), 529–546 | MR | Zbl
[19] A. Cabada, F. A.F. Tojo, “Solutions and GreenTs function of the first order linear equation with reflection and initial conditions”, Boundary Value Problems, 99 (2014), 1–16 | MR
[20] P. Djakov, B. S. Mityagin, “Equiconvergence of spectral decomposition of 1D Dirac operator with regular boundary conditions”, J. Approx. Theory, 164:7 (2012), 879–927 | MR | Zbl
[21] I. Ts. Gohberg, M. G. Krein, An introduction to the theory of linear nonselfadjoint operators in Hilbert space, Amer. Math. Soc., Providence, RI, 1969 | MR
[22] R. E. Kalman, R. S. Bucy, “New results in linear filtering and prediction theory”, Trans. ASME. Ser. D.J. Basic Eng., 86 (1961), 95–108 | MR
[23] A. A. Kopzhassarova, A. L. Lukashov, A. M. Sarsenbi, “Spectral properties of non-self-adjoint perturbations for a spectral problem with involution”, Abstr. Appl. Anal., 2012, 590781 | MR | Zbl
[24] L. V. Kritskov, A. M. Sarsenbi, “Riesz basis property of system of root function of second-order differential operator with involution”, Diff. Equat., 53:1 (2017), 35–48 | MR | Zbl
[25] D. Piao, “Periodic and almost periodic solutions for differential equations with reflection of the argument”, Nonlinear Anal., 57:4 (2004), 633–637 | MR | Zbl
[26] V. A. Pliss, Nonlocal problems of oscillations theory, Nauka, M., 1964 (in Russian) | MR
[27] V. A. Pliss, “Families of periodic solutions of systems of differential equations of second order without dissipation”, Differencial'nye Uravneniya, 1965, no. 1, 1428–1448 | MR | Zbl
[28] A. M. Savchuk, A. A. Shkalikov, “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | MR | Zbl
[29] W. Watkins, “Asymptotic properties of differential equations with involutions”, Int. J. Pure. Appl. Math., 44:4 (2008), 485–492 | MR | Zbl
[30] J. Wiener, A. R. Aftabizadeh, “Boundary value problems for differential equations with reflection of the argument”, Intern. J. Math. Math. Sci., 8:1 (1985), 151–163 | MR | Zbl