Surjective quadratic Jordan algebras
Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 19-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the concepts of surjectivity and linear minimality for quadratic Jordan algebras, then we present a partial classification of such algebras of characteristic 2. As a corollary, we obtain that in substance non-trivial minimal quadratic Jordan algebras are fields.
@article{EMJ_2020_11_2_a2,
     author = {Ye. Baissalov and A. Aljouiee},
     title = {Surjective quadratic {Jordan} algebras},
     journal = {Eurasian mathematical journal},
     pages = {19--29},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a2/}
}
TY  - JOUR
AU  - Ye. Baissalov
AU  - A. Aljouiee
TI  - Surjective quadratic Jordan algebras
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 19
EP  - 29
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a2/
LA  - en
ID  - EMJ_2020_11_2_a2
ER  - 
%0 Journal Article
%A Ye. Baissalov
%A A. Aljouiee
%T Surjective quadratic Jordan algebras
%J Eurasian mathematical journal
%D 2020
%P 19-29
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a2/
%G en
%F EMJ_2020_11_2_a2
Ye. Baissalov; A. Aljouiee. Surjective quadratic Jordan algebras. Eurasian mathematical journal, Tome 11 (2020) no. 2, pp. 19-29. http://geodesic.mathdoc.fr/item/EMJ_2020_11_2_a2/

[1] 421–427 | MR

[2] E. R. Baisalov, K. A. Meirembekov, A. T. Nurtazin, “Definable minimal models”, Model Theory in Kazakhstan, EcoStudy, Almaty, 2006, 140–157 | MR

[3] 105–110 | MR | Zbl

[4] E. R. Baisalov, R. Bibazarov, B. Duzban, “Linear minimal associative rings”, Bulletin of the L. N. Gumilyov Eurasian National University (math., comp. sci., mech. series), 89 (2012), 32–35 (in Kazakh)

[5] N. Jacobson, Lie algebras, Wiley, Sons, New York etc, 1962 | MR | Zbl

[6] N. Jacobson, Lectures on quadratic jordan algebras, Tata Institute of Fundamental research, Bombay, 1962 | MR

[7] K. McCrimmon, A taste of Jordan algebras, Springer, New York, 2004 | MR | Zbl

[8] K. McCrimmon, “Quadratic Jordan algebras and cubing operations”, Trans. of the Amer. Math. Soc., 153 (1971), 265–278 | MR | Zbl

[9] E. I. ZelTmanov, “Jordan division algebras”, Algebra and Logic, 18 (1979), 286–310 (in Russian) | MR

[10] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative, Pure and Applied Mathematics, 104, Academic Press, 1982 | MR | Zbl