The solvability results for the third-order singular non-linear differential equation
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 85-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give some conditions for solvability in $L_2(\mathbb{R})$ ($\mathbb{R}=(-\infty,+\infty)$) of the following singular non-linear differential equation: $$ ly\equiv-y'''(x)+q(x,y,y')y'+s(x,y,y')y=h(x). $$ We assume that $q$ and $s$ are real-valued unbounded functions and $q$ does not obey the “potential” $s$. For the solution $y$ we prove that $$ ||y'''||_2+||q(\cdot,y,y')y'||_2+||s(\cdot,y,y')y||_2\infty, $$ where $||\cdot||_2$ is the norm in $L_2$. To establish these facts, we use coercive solvability results for the corresponding linear third-order differential equation obtained by us earlier.
@article{EMJ_2019_10_4_a8,
     author = {Zh. B. Yeskabylova and K. N. Ospanov and T. N. Bekjan},
     title = {The solvability results for the third-order singular non-linear differential equation},
     journal = {Eurasian mathematical journal},
     pages = {85--91},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a8/}
}
TY  - JOUR
AU  - Zh. B. Yeskabylova
AU  - K. N. Ospanov
AU  - T. N. Bekjan
TI  - The solvability results for the third-order singular non-linear differential equation
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 85
EP  - 91
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a8/
LA  - en
ID  - EMJ_2019_10_4_a8
ER  - 
%0 Journal Article
%A Zh. B. Yeskabylova
%A K. N. Ospanov
%A T. N. Bekjan
%T The solvability results for the third-order singular non-linear differential equation
%J Eurasian mathematical journal
%D 2019
%P 85-91
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a8/
%G en
%F EMJ_2019_10_4_a8
Zh. B. Yeskabylova; K. N. Ospanov; T. N. Bekjan. The solvability results for the third-order singular non-linear differential equation. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 85-91. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a8/

[1] R. D. Akhmetkalieva, L. E. Persson, K. N. Ospanov, P. Wall, “Some new results concerning a class of third-order differential equations”, Appl. Anal., 94:2 (2015), 419–434 | DOI | MR

[2] M. B. Muratbekov, M. M. Muratbekov, K. N. Ospanov, “Coercive solvability of the odd-order differential equation and its applications”, Dokl. Math., 435:3 (2010), 310–313 | MR | Zbl

[3] K. N. Ospanov, “Discreteness and estimates of spectrum of a first order difference operator”, Eurasian Math. J., 9:2 (2018), 89–94 | DOI | MR

[4] K. N. Ospanov, Zh. B. Yeskabylova, D. R. Beisenova, “Maximal regularity estimates for higher order differential equations with fluctuating coefficients”, Eurasian Math. J., 10:2 (2019), 65–74 | DOI | MR