The solvability results for the third-order singular non-linear differential equation
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 85-91
Voir la notice de l'article provenant de la source Math-Net.Ru
We give some conditions for solvability in $L_2(\mathbb{R})$ ($\mathbb{R}=(-\infty,+\infty)$) of the following
singular non-linear differential equation:
$$
ly\equiv-y'''(x)+q(x,y,y')y'+s(x,y,y')y=h(x).
$$
We assume that $q$ and $s$ are real-valued unbounded functions and $q$ does not obey the “potential” $s$.
For the solution $y$ we prove that
$$
||y'''||_2+||q(\cdot,y,y')y'||_2+||s(\cdot,y,y')y||_2\infty,
$$
where $||\cdot||_2$ is the norm in $L_2$. To establish these facts, we use coercive solvability results for the
corresponding linear third-order differential equation obtained by us earlier.
@article{EMJ_2019_10_4_a8,
author = {Zh. B. Yeskabylova and K. N. Ospanov and T. N. Bekjan},
title = {The solvability results for the third-order singular non-linear differential equation},
journal = {Eurasian mathematical journal},
pages = {85--91},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a8/}
}
TY - JOUR AU - Zh. B. Yeskabylova AU - K. N. Ospanov AU - T. N. Bekjan TI - The solvability results for the third-order singular non-linear differential equation JO - Eurasian mathematical journal PY - 2019 SP - 85 EP - 91 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a8/ LA - en ID - EMJ_2019_10_4_a8 ER -
%0 Journal Article %A Zh. B. Yeskabylova %A K. N. Ospanov %A T. N. Bekjan %T The solvability results for the third-order singular non-linear differential equation %J Eurasian mathematical journal %D 2019 %P 85-91 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a8/ %G en %F EMJ_2019_10_4_a8
Zh. B. Yeskabylova; K. N. Ospanov; T. N. Bekjan. The solvability results for the third-order singular non-linear differential equation. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 85-91. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a8/