Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 47-62
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss a few old results concerning embedding theorems for Campanato and Sobolev–Morrey spaces adapting the formulations to the case of domains of class $C^{0,\gamma}$, and we present more recent results concerning the extension of functions from Sobolev–Morrey spaces defined on those domains. As a corollary of the extension theorem we obtain an embedding theorem for Sobolev–Morrey spaces on arbitrary $C^{0,\gamma}$ domains.
@article{EMJ_2019_10_4_a5,
author = {P. D. Lamberti and V. Vespri},
title = {Remarks on {Sobolev--Morrey--Campanato} spaces defined on $C^{0,\gamma}$ domains},
journal = {Eurasian mathematical journal},
pages = {47--62},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/}
}
TY - JOUR
AU - P. D. Lamberti
AU - V. Vespri
TI - Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains
JO - Eurasian mathematical journal
PY - 2019
SP - 47
EP - 62
VL - 10
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/
LA - en
ID - EMJ_2019_10_4_a5
ER -
P. D. Lamberti; V. Vespri. Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 47-62. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/