Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 47-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a few old results concerning embedding theorems for Campanato and Sobolev–Morrey spaces adapting the formulations to the case of domains of class $C^{0,\gamma}$, and we present more recent results concerning the extension of functions from Sobolev–Morrey spaces defined on those domains. As a corollary of the extension theorem we obtain an embedding theorem for Sobolev–Morrey spaces on arbitrary $C^{0,\gamma}$ domains.
@article{EMJ_2019_10_4_a5,
     author = {P. D. Lamberti and V. Vespri},
     title = {Remarks on {Sobolev--Morrey--Campanato} spaces defined on $C^{0,\gamma}$ domains},
     journal = {Eurasian mathematical journal},
     pages = {47--62},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/}
}
TY  - JOUR
AU  - P. D. Lamberti
AU  - V. Vespri
TI  - Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 47
EP  - 62
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/
LA  - en
ID  - EMJ_2019_10_4_a5
ER  - 
%0 Journal Article
%A P. D. Lamberti
%A V. Vespri
%T Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains
%J Eurasian mathematical journal
%D 2019
%P 47-62
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/
%G en
%F EMJ_2019_10_4_a5
P. D. Lamberti; V. Vespri. Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 47-62. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/

[1] G. C. Barozzi, “Su una generalizzazione degli spazi $L^{(q,\lambda)}$ di Morrey”, Ann. Scuola Norm. Sup. Pisa (3), 19 (1965), 609–626 (in Italian) | MR | Zbl

[2] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral representations of functions and imbedding theorems, Translated from Russian, v. I, Scripta Series in Mathematics, ed. M.H. Taibleson, V.H. Winston Sons, Washington, D.C.; Halsted Press [John Wiley Sons], New York–Toronto, Ont.–London, 1978 | MR | Zbl

[3] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral representations of functions and imbedding theorems, Translated from Russian, v. II, Scripta Series in Mathematics, ed. M.H. Taibleson, V.H. Winston Sons, Washington, D.C.; Halsted Press [John Wiley Sons], New York–Toronto, Ont.–London, 1979 | MR | Zbl

[4] Soviet Math. Dokl., 16 (1975) | MR | Zbl

[5] V. I. Burenkov, “A way of continuing di erentiable functions”, Studies in the theory of di erentiable functions of several variables and its applications, VI, Trudy Mat. Inst. Steklov, 140, 1976, 27–67 (in Russian) ; 286–287; English transl.: Proc. Steklov Inst. Math., 140:1 (1979), American Mathematical Society, Providence, Rhode Island | MR | Zbl

[6] V. I. Burenkov, Sobolev spaces on domains, Teubner-Texte Zur Mathematik, 137, Springer, 1998 | DOI | MR

[7] A. P. Calderon, A. Zygmund, “On singular integrals”, American Journal of Mathematics, 78:2 (1956), 289–309 | DOI | MR | Zbl

[8] S. Campanato, “Il teorema di immersione di Sobolev per una classe di aperti non dotati della proprieta di cono”, Ricerche Mat., 11 (1962), 103–122 (in Italian) | MR | Zbl

[9] S. Campanato, “Proprieta di h olderianita di alcune classi di funzioni”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 175–188 (in Italian) | MR | Zbl

[10] S. Campanato, “Proprieta di inclusione per spazi di Morrey”, Ricerche Mat., 12 (1963), 67–86 (in Italian) | MR | Zbl

[11] S. Campanato, G. Stampacchia, “Sulle maggiorazioni in $L^p$ nella teoria delle equazioni ellittiche”, Bollettino dell'Unione Matematica Italiana, Serie 3, 20:3 (1965), 393–399 (in Italian) | MR | Zbl

[12] S. Campanato, Sistemi ellittici in forma divergenza: regolarita all'interno, Scuola Normale Superiore editors, Pisa, 1980 (in Italian) | MR | Zbl

[13] P. Cannarsa, B. Terreni, V. Vespri, “Analytic semigroups generated by nonvariational elliptic systems of second order under Dirichlet boundary conditions”, J. Math. Anal. Appl., 112:1 (1985), 56–103 | DOI | MR | Zbl

[14] R. R. Coifman, “A real variable characterization of $H^p$”, Studia Math., 51 (1974), 269–274 | DOI | MR | Zbl

[15] R. R. Coifman, “Characterization of Fourier transforms of Hardy spaces”, Proc. Nat. Acad. Sci. USA, 71 (1974), 4133–4134 | DOI | MR | Zbl

[16] R. R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in Math., 242, Springer-Verlag, Berlin–New York, 1971 | DOI | MR | Zbl

[17] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull Amer Math Soc., 83 (1977), 569–645 | DOI | MR | Zbl

[18] G. Da Prato, “Spazi $mathfrak{L}^{p,\theta}$ e loro proprieta”, Ann. Mat. Pura Appl. (4), 69 (1965), 383–392 (in Italian) | DOI | MR | Zbl

[19] E. De Giorgi, “Sulla di erenziabilita e l'analiticita delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat., (3), 3 (1957), 25–43 (in Italian) | MR | Zbl

[20] E. Durand-Cartagena, J. A. Jaramillo, N. Shanmugalingam, “First order Poincare inequalities in metric measure spaces”, Ann. Acad. Sci. Fenn. Math., 38:1 (2013), 287–308 | DOI | MR | Zbl

[21] M. S. Fanciullo, P. D. Lamberti, “On Burenkov's extension operator preserving Sobolev-Morrey spaces on Lipschitz domains”, Math. Nachr., 290:1 (2017), 37–49 | DOI | MR | Zbl

[22] C. Fefferman, E. M. Stein, “Hp spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl

[23] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, 105, Princeton University Press, Princeton, NJ, 1983 | MR | Zbl

[24] D. Gilbarg, N. S. Trudinger, Elliptic partial di erential equations of second order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001 | MR

[25] D. Greco, “Criteri di compattezza per insiemi di funzioni in $n$ variabili indipendenti”, Ricerche Mat., 1 (1952), 124–144 | MR | Zbl

[26] P. Hajłasz, P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., 145, no. 688, 2000 | MR

[27] P. Koskela, Y. R-Y. Zhang, Y. Zhou, “Morrey-Sobolev extension domains”, J. Geom. Anal., 27:2 (2017), 1413–1434 | DOI | MR | Zbl

[28] A. Kufner, O. John, S. Fučik, Function spaces, Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordho International Publishing, Leyden; Academia, Prague, 1977 | MR | Zbl

[29] P. D. Lamberti, Y. Pinchover, “$L^p$ Hardy inequality on $C^{1,\gamma}$ domains”, Ann. Scuola Norm. Sup. Pisa (5), 19:3 (2019), 1135–1159 (to appear) | MR | Zbl

[30] P. D. Lamberti, I. Y. Violo, “On Stein's extension operator preserving Sobolev-Morrey spaces”, Math. Nachr., 292:8 (2019), 1701–1715 | DOI | MR | Zbl

[31] R. H. Latter, “A characterization of $H^p (\mathbb{R}^n)$ in terms of atoms”, Studia Math., 62 (1978), 93–101 | DOI | MR | Zbl

[32] E. Nakai, Y. Sawano, “Orlicz-Hardy spaces and their duals”, Sci. China. Math., 57 (2014), 903–962 | DOI | MR | Zbl

[33] J. Nash, “Continuity of solutions of parabolic and elliptic equations”, American Journal of Mathematics, 80:4 (1958), 931–954 | DOI | MR | Zbl

[34] V. G. Maz'ya, S. V. Poborchi, Differentiable functions on bad domains, World Scientific Publishing Co., Inc., River Edge, NJ, 1997 | MR | Zbl

[35] L. Nirenberg, “Estimates and existence of solutions of elliptic equations”, Comm. Pure Appl. Math., 9 (1956), 509–529 | DOI | MR | Zbl

[36] S. G. Staples, “$L^p$-averaging domains and the Poincaré inequality”, Ann. Acad. Sci. Fenn. Ser. AI Math., 14:1 (1989), 103–127 | DOI | MR | Zbl

[37] E. M. Stein, Singular integrals and di erentiability properties of functions, Princeton University Press, Princeton, NJ, 1970 | MR

[38] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl

[39] E. M. Stein, G. Weiss, “On the theory of harmonic functions of several variables. I. The theory of $H^p$-spaces”, Acta Math., 103 (1960), 25–62 | DOI | MR | Zbl

[40] M. H. Taibleson, G. Weiss, “The molecular characterization of certain Hardy spaces”, Representation theorems for Hardy spaces, Astérisque, 77, 1980, 67–149 | MR

[41] A. Vitolo, “Functions with derivatives in spaces of Morrey type”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 5, 21 (1997), 1–24 | MR

[42] T. Walsh, “The dual of $H^p(R_+^{n+1})$ for $p1$”, Canad. J. Math., 25 (1973), 567–577 | DOI | MR | Zbl