Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 47-62

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a few old results concerning embedding theorems for Campanato and Sobolev–Morrey spaces adapting the formulations to the case of domains of class $C^{0,\gamma}$, and we present more recent results concerning the extension of functions from Sobolev–Morrey spaces defined on those domains. As a corollary of the extension theorem we obtain an embedding theorem for Sobolev–Morrey spaces on arbitrary $C^{0,\gamma}$ domains.
@article{EMJ_2019_10_4_a5,
     author = {P. D. Lamberti and V. Vespri},
     title = {Remarks on {Sobolev--Morrey--Campanato} spaces defined on $C^{0,\gamma}$ domains},
     journal = {Eurasian mathematical journal},
     pages = {47--62},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/}
}
TY  - JOUR
AU  - P. D. Lamberti
AU  - V. Vespri
TI  - Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 47
EP  - 62
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/
LA  - en
ID  - EMJ_2019_10_4_a5
ER  - 
%0 Journal Article
%A P. D. Lamberti
%A V. Vespri
%T Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains
%J Eurasian mathematical journal
%D 2019
%P 47-62
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/
%G en
%F EMJ_2019_10_4_a5
P. D. Lamberti; V. Vespri. Remarks on Sobolev--Morrey--Campanato spaces defined on $C^{0,\gamma}$ domains. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 47-62. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a5/