On a Kudryavtsev type function space
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 34-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we introduce a Kudryavtsev type space, the norm of which contains a differential operator called the multiweighted derivative. This type of spaces has been studied in details for power weights. Here we consider general weights. The main result of the paper is the proof of the existence of a generalized polynomial, to which functions of this space stabilize at a singular point, so that the coefficients of this polynomial can be considered as the characteristics of the behaviour of a function nearby this singularity.
@article{EMJ_2019_10_4_a4,
     author = {A. A. Kalybay and Zh. A. Keulimzhayeva and R. Oinarov},
     title = {On a {Kudryavtsev} type function space},
     journal = {Eurasian mathematical journal},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a4/}
}
TY  - JOUR
AU  - A. A. Kalybay
AU  - Zh. A. Keulimzhayeva
AU  - R. Oinarov
TI  - On a Kudryavtsev type function space
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 34
EP  - 46
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a4/
LA  - en
ID  - EMJ_2019_10_4_a4
ER  - 
%0 Journal Article
%A A. A. Kalybay
%A Zh. A. Keulimzhayeva
%A R. Oinarov
%T On a Kudryavtsev type function space
%J Eurasian mathematical journal
%D 2019
%P 34-46
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a4/
%G en
%F EMJ_2019_10_4_a4
A. A. Kalybay; Zh. A. Keulimzhayeva; R. Oinarov. On a Kudryavtsev type function space. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 34-46. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a4/

[1] Z. T. Abdikalikova, Some new results concerning boundedness and compactness for embeddings between spaces with multiweighted derivatives, PhD Thesis, Lule a University of Technology, 2009

[2] B. L. Baideldinov, Theory of multiweighted spaces and its application to boundary problems for singular differential equations, Doctoral Thesis, Almaty, 1998 (in Russian)

[3] A. A. Kalybay, A new development of Nikol'skii-Lizorkin and Hardy type inequalities with applications, PhD Thesis, Lule a University of Technology, 2006

[4] L. D. Kudryavtsev, Selected Works, Chapter I, v. II, Function spaces. Differential equations, Fizmatlit, M., 2008 (in Russian)

[5] L. D. Kudryavtsev, Selected Works, Chapter II, v. II, Function spaces. Differential equations, Fizmatlit, M., 2008 (in Russian)

[6] L. D. Kudryavtsev, “On norms in weighted spaces of functions given on infinite intervals”, Anal. Math., 12:4 (1986), 269–282 | DOI | MR | Zbl

[7] R. Oinarov, “Boundedness and compactness of Volterra type integral operators”, Siberian Math. J., 48:5 (2007), 884–896 | DOI | MR | Zbl