New general solution to a nonlinear Fredholm integro-differential equation
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 24-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Partition $\Delta_N$ of the interval $[0, T]$ into $N$ parts and introduction of additional parameters and new unknown functions on subintervals reduce a nonlinear Fredholm integro-differential equation to the special Cauchy problems for a system of nonlinear integro-differential equations with parameters. Conditions for the existence of a unique solution to the latter problem are obtained. Employing this solution we construct a $\Delta_N$ general solution to the nonlinear Fredholm integro-differential equation. Properties of the $\Delta_N$ general solution and its application to a nonlinear boundary value problem for the considered equation are discussed.
@article{EMJ_2019_10_4_a3,
     author = {D. S. Dzhumabaev and S. T. Mynbayeva},
     title = {New general solution to a nonlinear {Fredholm} integro-differential equation},
     journal = {Eurasian mathematical journal},
     pages = {24--33},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a3/}
}
TY  - JOUR
AU  - D. S. Dzhumabaev
AU  - S. T. Mynbayeva
TI  - New general solution to a nonlinear Fredholm integro-differential equation
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 24
EP  - 33
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a3/
LA  - en
ID  - EMJ_2019_10_4_a3
ER  - 
%0 Journal Article
%A D. S. Dzhumabaev
%A S. T. Mynbayeva
%T New general solution to a nonlinear Fredholm integro-differential equation
%J Eurasian mathematical journal
%D 2019
%P 24-33
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a3/
%G en
%F EMJ_2019_10_4_a3
D. S. Dzhumabaev; S. T. Mynbayeva. New general solution to a nonlinear Fredholm integro-differential equation. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 24-33. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a3/

[1] A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary value problems, De Gruyter, Berlin, 2016 | MR | Zbl

[2] D. S. Dzhumabaev, “Necessary and sufficient conditions for the solvability of linear boundary-value problems for the Fredholm integro-differential equations”, Ukrainian Math. J., 66:8 (2015), 1200–1219 | DOI | MR | Zbl

[3] D. S. Dzhumabaev, “On one approach to solve the linear boundary value problems for Fredholm integro-differential equations”, J. Comput. Appl. Math., 294 (2016), 342–357 | DOI | MR | Zbl

[4] D. S. Dzhumabaev, “New general solutions to linear Fredholm integro-differential equations and their applications on solving the boundary value problems”, J. Comput. Appl. Math., 327 (2018), 79–108 | DOI | MR | Zbl

[5] D. S. Dzhumabaev, “Computational methods of solving the boundary value problems for the loaded differential and Fredholm integro-differential equations”, Math. Meth. Appl. Sci., 41:4 (2018), 1439–1462 | DOI | MR | Zbl

[6] D. S. Dzhumabaev, “New general solutions to ordinary differential equations and methods for solving boundary value problems”, Ukrainian Math. J., 71:7 (2019), 884–905 | MR | Zbl

[7] B. A. Trenogin, Functional analysis, Izd. Nauka, Glav. Red. Fiz. mat. Lit., M., 1980 (in Russian) | MR