New general solution to a nonlinear Fredholm integro-differential equation
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 24-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Partition $\Delta_N$ of the interval $[0, T]$ into $N$ parts and introduction of additional parameters and new unknown functions on subintervals reduce a nonlinear Fredholm integro-differential equation to the special Cauchy problems for a system of nonlinear integro-differential equations with parameters. Conditions for the existence of a unique solution to the latter problem are obtained. Employing this solution we construct a $\Delta_N$ general solution to the nonlinear Fredholm integro-differential equation. Properties of the $\Delta_N$ general solution and its application to a nonlinear boundary value problem for the considered equation are discussed.
@article{EMJ_2019_10_4_a3,
author = {D. S. Dzhumabaev and S. T. Mynbayeva},
title = {New general solution to a nonlinear {Fredholm} integro-differential equation},
journal = {Eurasian mathematical journal},
pages = {24--33},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a3/}
}
TY - JOUR AU - D. S. Dzhumabaev AU - S. T. Mynbayeva TI - New general solution to a nonlinear Fredholm integro-differential equation JO - Eurasian mathematical journal PY - 2019 SP - 24 EP - 33 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a3/ LA - en ID - EMJ_2019_10_4_a3 ER -
D. S. Dzhumabaev; S. T. Mynbayeva. New general solution to a nonlinear Fredholm integro-differential equation. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 24-33. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a3/