@article{EMJ_2019_10_4_a3,
author = {D. S. Dzhumabaev and S. T. Mynbayeva},
title = {New general solution to a nonlinear {Fredholm} integro-differential equation},
journal = {Eurasian mathematical journal},
pages = {24--33},
year = {2019},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a3/}
}
D. S. Dzhumabaev; S. T. Mynbayeva. New general solution to a nonlinear Fredholm integro-differential equation. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 24-33. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a3/
[1] A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary value problems, De Gruyter, Berlin, 2016 | MR | Zbl
[2] D. S. Dzhumabaev, “Necessary and sufficient conditions for the solvability of linear boundary-value problems for the Fredholm integro-differential equations”, Ukrainian Math. J., 66:8 (2015), 1200–1219 | DOI | MR | Zbl
[3] D. S. Dzhumabaev, “On one approach to solve the linear boundary value problems for Fredholm integro-differential equations”, J. Comput. Appl. Math., 294 (2016), 342–357 | DOI | MR | Zbl
[4] D. S. Dzhumabaev, “New general solutions to linear Fredholm integro-differential equations and their applications on solving the boundary value problems”, J. Comput. Appl. Math., 327 (2018), 79–108 | DOI | MR | Zbl
[5] D. S. Dzhumabaev, “Computational methods of solving the boundary value problems for the loaded differential and Fredholm integro-differential equations”, Math. Meth. Appl. Sci., 41:4 (2018), 1439–1462 | DOI | MR | Zbl
[6] D. S. Dzhumabaev, “New general solutions to ordinary differential equations and methods for solving boundary value problems”, Ukrainian Math. J., 71:7 (2019), 884–905 | MR | Zbl
[7] B. A. Trenogin, Functional analysis, Izd. Nauka, Glav. Red. Fiz. mat. Lit., M., 1980 (in Russian) | MR