Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 14-23

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions on an open set $\Omega\subset \mathbb{R}^n$ are obtained ensuring that for $l,m\in\mathbb{N}_0$, $m l$ the embedding $\mathring{W}_\infty^l(\Omega)\subset W_\infty^m(\Omega)$ is compact, where $W_\infty^m(\Omega)$ is the Sobolev space and $\mathring{W}_\infty^l(\Omega)$ is the closure in $W_\infty^l(\Omega)$ of the space of all infinitely continuously differentiable functions on $\Omega$ with supports compact in $\Omega$.
@article{EMJ_2019_10_4_a2,
     author = {V. I. Burenkov and T. V. Tararykova},
     title = {Necessary and sufficient conditions of compactness of certain embeddings of {Sobolev} spaces},
     journal = {Eurasian mathematical journal},
     pages = {14--23},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - T. V. Tararykova
TI  - Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 14
EP  - 23
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/
LA  - en
ID  - EMJ_2019_10_4_a2
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A T. V. Tararykova
%T Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces
%J Eurasian mathematical journal
%D 2019
%P 14-23
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/
%G en
%F EMJ_2019_10_4_a2
V. I. Burenkov; T. V. Tararykova. Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 14-23. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/