Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 14-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions on an open set $\Omega\subset \mathbb{R}^n$ are obtained ensuring that for $l,m\in\mathbb{N}_0$, $m l$ the embedding $\mathring{W}_\infty^l(\Omega)\subset W_\infty^m(\Omega)$ is compact, where $W_\infty^m(\Omega)$ is the Sobolev space and $\mathring{W}_\infty^l(\Omega)$ is the closure in $W_\infty^l(\Omega)$ of the space of all infinitely continuously differentiable functions on $\Omega$ with supports compact in $\Omega$.
@article{EMJ_2019_10_4_a2,
     author = {V. I. Burenkov and T. V. Tararykova},
     title = {Necessary and sufficient conditions of compactness of certain embeddings of {Sobolev} spaces},
     journal = {Eurasian mathematical journal},
     pages = {14--23},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - T. V. Tararykova
TI  - Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 14
EP  - 23
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/
LA  - en
ID  - EMJ_2019_10_4_a2
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A T. V. Tararykova
%T Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces
%J Eurasian mathematical journal
%D 2019
%P 14-23
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/
%G en
%F EMJ_2019_10_4_a2
V. I. Burenkov; T. V. Tararykova. Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 14-23. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/

[1] Halsted Press Book, 1978–1979 | MR | Zbl

[2] V. I. Burenkov, Sobolev spaces on domains, B.G. Teubner, Stuttgart–Leipzig, 1998, 312 pp. | MR | Zbl

[3] V. I. Burenkov, V. Goldshtein, A. Ukhlov, “Conformal spectral stability estimates for the Dirichlet Laplacian”, Mathematische Nachrichten, 288:16 (2015), 1822–1833 | DOI | MR | Zbl

[4] V. I. Burenkov, P. D. Lamberti, “Spectral stability estimates for elliptic operators in domain perturbation problems”, Eurasian Mathematical Journal, 1 (2008), 11–21

[5] V. I. Burenkov, P. D. Lamberti, “Spectral stability of higher order uniformly elliptic operators”, Sobolev spaces in mathematics. II, Int. Math. Ser. (N.Y.), 9, Springer, New York, 2009, 69–102 | DOI | MR | Zbl

[6] V. I. Burenkov, P. D. Lamberti, “Spectral stability of the p-Laplacian”, Nonlinear Anal., 71:5–6 (2009), 2227–2235 | DOI | MR | Zbl

[7] Journal of Mathematical Sciences, 149 (2006) | MR

[8] V. I. Burenkov, B. Th. Tuyen, “On spectral stability problem for a pair of self-adjoint elliptic di erential operators on bounded open sets”, Eurasian Mathematical Journal, 10:3 (2019), 84–88 | DOI | MR

[9] E. B. Davies, Spectral theory and di erential operators, Cambridge University Press, Cambridge, 1995 | MR

[10] Springer Series in Soviet Mathematics, Springer-Verlag, 1985 | MR | Zbl

[11] V. G. Maz'ya, S. V. Poborchii, Differentiable functions on bad domains, World Scientific Publishing, 1997 | MR | Zbl

[12] S. M. Nikol'ski, Approximation of functions of several variables and embedding theorems, 1-st ed., “Nauka”, M., 1969 (in Russian) ; 2-nd ed., “Nauka”, M., 1977 (Russian); English transl.: 1-st ed., Springer-Verlag, 1975 | MR | Zbl