Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces
Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 14-23
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions on an open set $\Omega\subset \mathbb{R}^n$ are obtained ensuring that for $l,m\in\mathbb{N}_0$, $m l$ the embedding $\mathring{W}_\infty^l(\Omega)\subset W_\infty^m(\Omega)$ is compact, where $W_\infty^m(\Omega)$ is the Sobolev space and $\mathring{W}_\infty^l(\Omega)$ is the closure in $W_\infty^l(\Omega)$ of the space of all infinitely continuously differentiable functions on $\Omega$ with supports compact in $\Omega$.
@article{EMJ_2019_10_4_a2,
author = {V. I. Burenkov and T. V. Tararykova},
title = {Necessary and sufficient conditions of compactness of certain embeddings of {Sobolev} spaces},
journal = {Eurasian mathematical journal},
pages = {14--23},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/}
}
TY - JOUR AU - V. I. Burenkov AU - T. V. Tararykova TI - Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces JO - Eurasian mathematical journal PY - 2019 SP - 14 EP - 23 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/ LA - en ID - EMJ_2019_10_4_a2 ER -
%0 Journal Article %A V. I. Burenkov %A T. V. Tararykova %T Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces %J Eurasian mathematical journal %D 2019 %P 14-23 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/ %G en %F EMJ_2019_10_4_a2
V. I. Burenkov; T. V. Tararykova. Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 14-23. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/