Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_4_a2, author = {V. I. Burenkov and T. V. Tararykova}, title = {Necessary and sufficient conditions of compactness of certain embeddings of {Sobolev} spaces}, journal = {Eurasian mathematical journal}, pages = {14--23}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/} }
TY - JOUR AU - V. I. Burenkov AU - T. V. Tararykova TI - Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces JO - Eurasian mathematical journal PY - 2019 SP - 14 EP - 23 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/ LA - en ID - EMJ_2019_10_4_a2 ER -
%0 Journal Article %A V. I. Burenkov %A T. V. Tararykova %T Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces %J Eurasian mathematical journal %D 2019 %P 14-23 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/ %G en %F EMJ_2019_10_4_a2
V. I. Burenkov; T. V. Tararykova. Necessary and sufficient conditions of compactness of certain embeddings of Sobolev spaces. Eurasian mathematical journal, Tome 10 (2019) no. 4, pp. 14-23. http://geodesic.mathdoc.fr/item/EMJ_2019_10_4_a2/
[1] Halsted Press Book, 1978–1979 | MR | Zbl
[2] V. I. Burenkov, Sobolev spaces on domains, B.G. Teubner, Stuttgart–Leipzig, 1998, 312 pp. | MR | Zbl
[3] V. I. Burenkov, V. Goldshtein, A. Ukhlov, “Conformal spectral stability estimates for the Dirichlet Laplacian”, Mathematische Nachrichten, 288:16 (2015), 1822–1833 | DOI | MR | Zbl
[4] V. I. Burenkov, P. D. Lamberti, “Spectral stability estimates for elliptic operators in domain perturbation problems”, Eurasian Mathematical Journal, 1 (2008), 11–21
[5] V. I. Burenkov, P. D. Lamberti, “Spectral stability of higher order uniformly elliptic operators”, Sobolev spaces in mathematics. II, Int. Math. Ser. (N.Y.), 9, Springer, New York, 2009, 69–102 | DOI | MR | Zbl
[6] V. I. Burenkov, P. D. Lamberti, “Spectral stability of the p-Laplacian”, Nonlinear Anal., 71:5–6 (2009), 2227–2235 | DOI | MR | Zbl
[7] Journal of Mathematical Sciences, 149 (2006) | MR
[8] V. I. Burenkov, B. Th. Tuyen, “On spectral stability problem for a pair of self-adjoint elliptic di erential operators on bounded open sets”, Eurasian Mathematical Journal, 10:3 (2019), 84–88 | DOI | MR
[9] E. B. Davies, Spectral theory and di erential operators, Cambridge University Press, Cambridge, 1995 | MR
[10] Springer Series in Soviet Mathematics, Springer-Verlag, 1985 | MR | Zbl
[11] V. G. Maz'ya, S. V. Poborchii, Differentiable functions on bad domains, World Scientific Publishing, 1997 | MR | Zbl
[12] S. M. Nikol'ski, Approximation of functions of several variables and embedding theorems, 1-st ed., “Nauka”, M., 1969 (in Russian) ; 2-nd ed., “Nauka”, M., 1977 (Russian); English transl.: 1-st ed., Springer-Verlag, 1975 | MR | Zbl