Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_3_a6, author = {V. I. Burenkov and B. Th. Tuyen}, title = {On spectral stability problem for a pair of self-adjoint elliptic differential operators on bounded open sets}, journal = {Eurasian mathematical journal}, pages = {84--88}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a6/} }
TY - JOUR AU - V. I. Burenkov AU - B. Th. Tuyen TI - On spectral stability problem for a pair of self-adjoint elliptic differential operators on bounded open sets JO - Eurasian mathematical journal PY - 2019 SP - 84 EP - 88 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a6/ LA - en ID - EMJ_2019_10_3_a6 ER -
%0 Journal Article %A V. I. Burenkov %A B. Th. Tuyen %T On spectral stability problem for a pair of self-adjoint elliptic differential operators on bounded open sets %J Eurasian mathematical journal %D 2019 %P 84-88 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a6/ %G en %F EMJ_2019_10_3_a6
V. I. Burenkov; B. Th. Tuyen. On spectral stability problem for a pair of self-adjoint elliptic differential operators on bounded open sets. Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a6/
[1] D. Buoso, P. D. Lamberti, “Eigenvalues of polyharmonic operators on variable domains”, ESAIM Control Optim. Calc. Var, 19:4 (2013), 1225–1235 | MR | Zbl
[2] V. I. Burenkov, Sobolev spaces on domains, B.G. Teubner, Stuttlgart–Leipzig, 1998 | MR | Zbl
[3] V. I. Burenkov, P. D. Lamberti, “Spectral stability of higher order uniformly elliptic operators”, Sobolev spaces in mathematics. II, Int. Math. Ser. (N. Y.), 9, Springer, New York, 2009, 69–102 | MR | Zbl
[4] Sh. N. Chow, J. K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 251, Springer-Verlag, New York–Berlin, 1982 | MR | Zbl
[5] E. B. Davies, Spectral theory and differential operators, Cambridge University Press, Cambridge, 1995 | MR | Zbl