On spectral stability problem for a pair of self-adjoint elliptic differential operators on bounded open sets
Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove estimates for the variation of the eigenvalues for a pair of self-adjoint elliptic differential operators in the case of diffeomorphic open sets.
@article{EMJ_2019_10_3_a6,
     author = {V. I. Burenkov and B. Th. Tuyen},
     title = {On spectral stability problem for a pair of self-adjoint elliptic differential operators on bounded open sets},
     journal = {Eurasian mathematical journal},
     pages = {84--88},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a6/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - B. Th. Tuyen
TI  - On spectral stability problem for a pair of self-adjoint elliptic differential operators on bounded open sets
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 84
EP  - 88
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a6/
LA  - en
ID  - EMJ_2019_10_3_a6
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A B. Th. Tuyen
%T On spectral stability problem for a pair of self-adjoint elliptic differential operators on bounded open sets
%J Eurasian mathematical journal
%D 2019
%P 84-88
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a6/
%G en
%F EMJ_2019_10_3_a6
V. I. Burenkov; B. Th. Tuyen. On spectral stability problem for a pair of self-adjoint elliptic differential operators on bounded open sets. Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a6/

[1] D. Buoso, P. D. Lamberti, “Eigenvalues of polyharmonic operators on variable domains”, ESAIM Control Optim. Calc. Var, 19:4 (2013), 1225–1235 | MR | Zbl

[2] V. I. Burenkov, Sobolev spaces on domains, B.G. Teubner, Stuttlgart–Leipzig, 1998 | MR | Zbl

[3] V. I. Burenkov, P. D. Lamberti, “Spectral stability of higher order uniformly elliptic operators”, Sobolev spaces in mathematics. II, Int. Math. Ser. (N. Y.), 9, Springer, New York, 2009, 69–102 | MR | Zbl

[4] Sh. N. Chow, J. K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 251, Springer-Verlag, New York–Berlin, 1982 | MR | Zbl

[5] E. B. Davies, Spectral theory and differential operators, Cambridge University Press, Cambridge, 1995 | MR | Zbl