Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_3_a4, author = {I. N. Parasidis}, title = {Extension and decomposition method for differential and integro-differential equations}, journal = {Eurasian mathematical journal}, pages = {48--67}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a4/} }
TY - JOUR AU - I. N. Parasidis TI - Extension and decomposition method for differential and integro-differential equations JO - Eurasian mathematical journal PY - 2019 SP - 48 EP - 67 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a4/ LA - en ID - EMJ_2019_10_3_a4 ER -
I. N. Parasidis. Extension and decomposition method for differential and integro-differential equations. Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 48-67. http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a4/
[1] N. Apreutesei, A. Ducrot, V. Volpert, “Travelling waves for integro-differential equations in population dinamics AIMS”, Discrete Cont. Dyn. Syst. Ser. B, 11:3 (2009), 541–561 | MR | Zbl
[2] M. Arisawa, “A remark on the definitions of viscosity solutions for the integro-differential equations with Lèvy operators”, J. Math. Pures Appl., 89 (2008), 567–574 | MR | Zbl
[3] G. Avalishvili, M. Avalishvili, D. Gordeziani, “On a nonlocal problem with integral boundary conditions for a multidimensional elliptic equation”, Applied Mathemat. Letters, 24:4 (2004), 566–571 | MR
[4] M. Benchohra, S. K. Ntouyas, “Existence results on the semiinfinite interval for first and second order integro-differential equations in Banach spaces with nonlocal conditions”, Acta Univ. Palacki. Olomuc, Fac. rer. nat. V Mathematica, 41 (2002), 13–19 | MR | Zbl
[5] A. V. Bitsatze, A. A. Samarskii, “On some simplest generalization of linear elliptic problems”, Dokl. Akad. Nauk SSSR, 185 (1969), 739–740 (in Russian) | MR
[6] F. Bloom, Ill posed problems for integro-differential equations in mechanics and electromagnetic theory, SIAM, 1981 | MR
[7] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21 (1963), 155–160 | MR
[8] J. M. Cushing, Integro-differential equations and delay models in population dynamics, Springer, 1977 | MR
[9] A. A. Dezin, “Nonstandard problems”, Matematicheskie Zametki, 41:3 (1987), 356–364 | MR | Zbl
[10] D. S. Dzhumabaev, “On one approach to solve the linear boundary value problems with Fredholm integro-differential equations”, Journal of Computational and Applied Mathematics, 294 (2016), 342–357 | MR | Zbl
[11] D. N. Georgiou, I. E. Kougias, “On fuzzy Fredholm and Volterra integral equations”, Journal of Fuzzy Mathematics, 9:4 (2001), 943–951 | MR | Zbl
[12] V. A. Il'in, E. I. Moiseev, “Two-dimensional nonlocal boundary value problem for Poissons operator in differential and difference variants”, Math. Model, 2:8 (1990), 132–156 (in Russian)
[13] N. I. Ionkin, “Solution of one boundary value problem of heat conduction theory with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 (in Russian) | MR | Zbl
[14] T. S. Kalmenov, N. E. Tokmaganbetov, “On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain”, Siberian Mathematical Journal, 54:6 (2013), 1287–1293 | MR | Zbl
[15] L. I. Kamynin, “On a boundary problem in the theory of heat conduction with a nonclassical boundary condition”, Zh. Vychisl. Math. Fiz., 4:6 (1964), 1006–1024 (in Russian) | MR
[16] M. Kandemir, “Nonlocal boundary value problems with transmission conditions”, Gulf Journal of Mathematics, 3:1 (2015), 1–17 | MR | Zbl
[17] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov, “About restrictions and extensions of operators”, D.A.N. SSSR, 271:6 (1983), 1307–1310 (in Russian) | MR | Zbl
[18] M. A. Kraemer, L. V. Kalachev, “Analysis of a class of nonlinear integro-differential equations arising in a forestry application”, Q. Appl. Math., 61:3 (2003), 513–535 | MR | Zbl
[19] M. G. Krein, “The theory of self-adjoint extensions of semi-bounded Hermitian operators and its aplications”, Mat. Sb., 20:3 (1947), 431–495 | MR | Zbl
[20] J. Medlock, M. Kot, “Spreading disease: integro-differential equations old and new”, Mathematical Biosciences, 184 (2003), 201–222 | MR | Zbl
[21] J. Von Neumann, “Allgemeine eigenwerttheorie hermitescher functional operatoren”, Math. Ann., 102 (1929–1930), 49–131 | MR | Zbl
[22] R. Oinarov, I. N. Parasidis, “Correct extensions of operators with finite defect in Banach spases”, Izv. Akad. Kaz. SSR, 5 (1988), 42–46 (in Russian) | MR | Zbl
[23] R. Oinarov, S. S. Sagintaeva, “Smooth expansions of minimal operator in Banach spase”, Izv. AN. Rep. Kaz., 1994, no. 5, 43–48 (in Russian) | MR
[24] I. N. Parassidis, P. C. Tsekrekos, “Correct selfadjoint and positive extensions of nondensely defined symmetric operators”, Abstract and Applied Analysis, 2005, no. 7, 767–790 | MR | Zbl
[25] I. N. Parasidis, P. C. Tsekrekos, “Correct and self-adjoint problems for quadratic operators”, Eurasian Mathematical Journal, 1:2 (2010), 122–135 | MR | Zbl
[26] I. N. Parasidis, E. Providas, “Extension operator method for the exact solution of integro-differential equations”, Contributions in Mathematics and Engineering, In Honor of Constantin Caratheodory, eds. Pardalos P., Rassias T., Springer, Cham, 2016, 473–496 | MR | Zbl
[27] A. D. Polyanin, A. I. Zhurov, “Exact solutions to some classes of nonlinear integral, integro-functional and integro-differential equation”, Dokl. Math., 77:2 (2008), 315–319 | MR
[28] L. S. Pulkina, “A nonlocal problem with integral condition for a hyperbolic equation”, Differ. Equations, 40:7 (2004), 15–27 | MR
[29] M. A. Sadybekov, B. K. Turmetov, “On an analog of periodic boundary value problems for the poisson equation in the disk”, Differential Equations, 50 (2014), 264–268 | MR | Zbl
[30] A. A. Samarskii, “On certain problems of the modern theory of differential equations”, Differ. Uravn., 16:11 (1980), 1221–1228 | MR
[31] E. W. Sachs, A. K. Strauss, “Efficient solution of a partial integro-differential equation in finance”, Appl. Numer. Math., 58 (2008), 1687–1703 | MR | Zbl
[32] K. Schumacher, “Traveling front solutions for integro-differential equations, I”, J. Rene Angew. Math., 316 (1980), 54–70 | MR | Zbl
[33] G. A. Shishkin, Linear Fredholm integro-differential equations, Buryat State University, Ulan-Ude, 2007, 655 pp. (in Russian)
[34] E. Shivanian, “Analysis of meshless local radial point in terpolation(MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics”, Engineering Analysis with Boundary Elements, 37 (2003), 1693–1702 | MR
[35] J. D. Tamarkin, “The notion of the Green's function in the theory of integro-differential equations”, Trans. Amer. Math. Soc., 29 (1927), 755–800 | MR | Zbl
[36] A. S. Tersenov, “Ultraparabolic equations and unsteady heat transfer”, Journal of Evaluation Equations, 5:2 (2005), 277–289 | MR | Zbl
[37] A. M. Wazwaz, Linear and nonlinear integral equations, methods and applications, Springer, Beijing, 2011 | MR | Zbl