Extension and decomposition method for differential and integro-differential equations
Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 48-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

A direct method for finding exact solutions of differential or Fredholm integro-differential equations with nonlocal boundary conditions is proposed. We investigate the abstract equations of the form $Bu = Au-gF(Au) = f$ and $B_1u = A^2u - qF(Au) - gF(A^2u) = f$ with abstract nonlocal boundary conditions $\Phi(u) = N\Psi(Au)$ and $\Phi(u) = N\Psi(Au)$, $\Phi(Au) = DF(Au) + N\Psi(A^2u)$, respectively, where $q$, $g$ are vectors, $D$, $N$ are matrices, $F$, $\Phi$, $\Psi$ are vector-functions. In this paper: we investigate the correctness of the equation $Bu = f$ and find its exact solution, we investigate the correctness of the equation $B_1u = f$ and find its exact solution, we find the conditions under which the operator $B_1$ has the decomposition $B_1=B^2$, i.e. $B_1$ is a quadratic operator, and then we investigate the correctness of the equation $B^2u = f_1$ and find its exact solution.
@article{EMJ_2019_10_3_a4,
     author = {I. N. Parasidis},
     title = {Extension and decomposition method for differential and integro-differential equations},
     journal = {Eurasian mathematical journal},
     pages = {48--67},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a4/}
}
TY  - JOUR
AU  - I. N. Parasidis
TI  - Extension and decomposition method for differential and integro-differential equations
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 48
EP  - 67
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a4/
LA  - en
ID  - EMJ_2019_10_3_a4
ER  - 
%0 Journal Article
%A I. N. Parasidis
%T Extension and decomposition method for differential and integro-differential equations
%J Eurasian mathematical journal
%D 2019
%P 48-67
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a4/
%G en
%F EMJ_2019_10_3_a4
I. N. Parasidis. Extension and decomposition method for differential and integro-differential equations. Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 48-67. http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a4/

[1] N. Apreutesei, A. Ducrot, V. Volpert, “Travelling waves for integro-differential equations in population dinamics AIMS”, Discrete Cont. Dyn. Syst. Ser. B, 11:3 (2009), 541–561 | MR | Zbl

[2] M. Arisawa, “A remark on the definitions of viscosity solutions for the integro-differential equations with Lèvy operators”, J. Math. Pures Appl., 89 (2008), 567–574 | MR | Zbl

[3] G. Avalishvili, M. Avalishvili, D. Gordeziani, “On a nonlocal problem with integral boundary conditions for a multidimensional elliptic equation”, Applied Mathemat. Letters, 24:4 (2004), 566–571 | MR

[4] M. Benchohra, S. K. Ntouyas, “Existence results on the semiinfinite interval for first and second order integro-differential equations in Banach spaces with nonlocal conditions”, Acta Univ. Palacki. Olomuc, Fac. rer. nat. V Mathematica, 41 (2002), 13–19 | MR | Zbl

[5] A. V. Bitsatze, A. A. Samarskii, “On some simplest generalization of linear elliptic problems”, Dokl. Akad. Nauk SSSR, 185 (1969), 739–740 (in Russian) | MR

[6] F. Bloom, Ill posed problems for integro-differential equations in mechanics and electromagnetic theory, SIAM, 1981 | MR

[7] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21 (1963), 155–160 | MR

[8] J. M. Cushing, Integro-differential equations and delay models in population dynamics, Springer, 1977 | MR

[9] A. A. Dezin, “Nonstandard problems”, Matematicheskie Zametki, 41:3 (1987), 356–364 | MR | Zbl

[10] D. S. Dzhumabaev, “On one approach to solve the linear boundary value problems with Fredholm integro-differential equations”, Journal of Computational and Applied Mathematics, 294 (2016), 342–357 | MR | Zbl

[11] D. N. Georgiou, I. E. Kougias, “On fuzzy Fredholm and Volterra integral equations”, Journal of Fuzzy Mathematics, 9:4 (2001), 943–951 | MR | Zbl

[12] V. A. Il'in, E. I. Moiseev, “Two-dimensional nonlocal boundary value problem for Poissons operator in differential and difference variants”, Math. Model, 2:8 (1990), 132–156 (in Russian)

[13] N. I. Ionkin, “Solution of one boundary value problem of heat conduction theory with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 (in Russian) | MR | Zbl

[14] T. S. Kalmenov, N. E. Tokmaganbetov, “On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain”, Siberian Mathematical Journal, 54:6 (2013), 1287–1293 | MR | Zbl

[15] L. I. Kamynin, “On a boundary problem in the theory of heat conduction with a nonclassical boundary condition”, Zh. Vychisl. Math. Fiz., 4:6 (1964), 1006–1024 (in Russian) | MR

[16] M. Kandemir, “Nonlocal boundary value problems with transmission conditions”, Gulf Journal of Mathematics, 3:1 (2015), 1–17 | MR | Zbl

[17] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov, “About restrictions and extensions of operators”, D.A.N. SSSR, 271:6 (1983), 1307–1310 (in Russian) | MR | Zbl

[18] M. A. Kraemer, L. V. Kalachev, “Analysis of a class of nonlinear integro-differential equations arising in a forestry application”, Q. Appl. Math., 61:3 (2003), 513–535 | MR | Zbl

[19] M. G. Krein, “The theory of self-adjoint extensions of semi-bounded Hermitian operators and its aplications”, Mat. Sb., 20:3 (1947), 431–495 | MR | Zbl

[20] J. Medlock, M. Kot, “Spreading disease: integro-differential equations old and new”, Mathematical Biosciences, 184 (2003), 201–222 | MR | Zbl

[21] J. Von Neumann, “Allgemeine eigenwerttheorie hermitescher functional operatoren”, Math. Ann., 102 (1929–1930), 49–131 | MR | Zbl

[22] R. Oinarov, I. N. Parasidis, “Correct extensions of operators with finite defect in Banach spases”, Izv. Akad. Kaz. SSR, 5 (1988), 42–46 (in Russian) | MR | Zbl

[23] R. Oinarov, S. S. Sagintaeva, “Smooth expansions of minimal operator in Banach spase”, Izv. AN. Rep. Kaz., 1994, no. 5, 43–48 (in Russian) | MR

[24] I. N. Parassidis, P. C. Tsekrekos, “Correct selfadjoint and positive extensions of nondensely defined symmetric operators”, Abstract and Applied Analysis, 2005, no. 7, 767–790 | MR | Zbl

[25] I. N. Parasidis, P. C. Tsekrekos, “Correct and self-adjoint problems for quadratic operators”, Eurasian Mathematical Journal, 1:2 (2010), 122–135 | MR | Zbl

[26] I. N. Parasidis, E. Providas, “Extension operator method for the exact solution of integro-differential equations”, Contributions in Mathematics and Engineering, In Honor of Constantin Caratheodory, eds. Pardalos P., Rassias T., Springer, Cham, 2016, 473–496 | MR | Zbl

[27] A. D. Polyanin, A. I. Zhurov, “Exact solutions to some classes of nonlinear integral, integro-functional and integro-differential equation”, Dokl. Math., 77:2 (2008), 315–319 | MR

[28] L. S. Pulkina, “A nonlocal problem with integral condition for a hyperbolic equation”, Differ. Equations, 40:7 (2004), 15–27 | MR

[29] M. A. Sadybekov, B. K. Turmetov, “On an analog of periodic boundary value problems for the poisson equation in the disk”, Differential Equations, 50 (2014), 264–268 | MR | Zbl

[30] A. A. Samarskii, “On certain problems of the modern theory of differential equations”, Differ. Uravn., 16:11 (1980), 1221–1228 | MR

[31] E. W. Sachs, A. K. Strauss, “Efficient solution of a partial integro-differential equation in finance”, Appl. Numer. Math., 58 (2008), 1687–1703 | MR | Zbl

[32] K. Schumacher, “Traveling front solutions for integro-differential equations, I”, J. Rene Angew. Math., 316 (1980), 54–70 | MR | Zbl

[33] G. A. Shishkin, Linear Fredholm integro-differential equations, Buryat State University, Ulan-Ude, 2007, 655 pp. (in Russian)

[34] E. Shivanian, “Analysis of meshless local radial point in terpolation(MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics”, Engineering Analysis with Boundary Elements, 37 (2003), 1693–1702 | MR

[35] J. D. Tamarkin, “The notion of the Green's function in the theory of integro-differential equations”, Trans. Amer. Math. Soc., 29 (1927), 755–800 | MR | Zbl

[36] A. S. Tersenov, “Ultraparabolic equations and unsteady heat transfer”, Journal of Evaluation Equations, 5:2 (2005), 277–289 | MR | Zbl

[37] A. M. Wazwaz, Linear and nonlinear integral equations, methods and applications, Springer, Beijing, 2011 | MR | Zbl