On the structure of free dual Leibniz algebras
Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 40-47
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that over a field of characteristic zero the free dual Leibniz algebras are the free associative-commutative algebras (without unity) with respect to the multiplication $a\circ b = ab+ba$ and their free generators are found. We construct the examples of subalgebras of two-generated free dual Leibniz algebra, that are free dual Leibniz algebras of countable rank.
@article{EMJ_2019_10_3_a3,
author = {A. Naurazbekova},
title = {On the structure of free dual {Leibniz} algebras},
journal = {Eurasian mathematical journal},
pages = {40--47},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a3/}
}
A. Naurazbekova. On the structure of free dual Leibniz algebras. Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 40-47. http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a3/