On the structure of free dual Leibniz algebras
Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 40-47

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that over a field of characteristic zero the free dual Leibniz algebras are the free associative-commutative algebras (without unity) with respect to the multiplication $a\circ b = ab+ba$ and their free generators are found. We construct the examples of subalgebras of two-generated free dual Leibniz algebra, that are free dual Leibniz algebras of countable rank.
@article{EMJ_2019_10_3_a3,
     author = {A. Naurazbekova},
     title = {On the structure of free dual {Leibniz} algebras},
     journal = {Eurasian mathematical journal},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a3/}
}
TY  - JOUR
AU  - A. Naurazbekova
TI  - On the structure of free dual Leibniz algebras
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 40
EP  - 47
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a3/
LA  - en
ID  - EMJ_2019_10_3_a3
ER  - 
%0 Journal Article
%A A. Naurazbekova
%T On the structure of free dual Leibniz algebras
%J Eurasian mathematical journal
%D 2019
%P 40-47
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a3/
%G en
%F EMJ_2019_10_3_a3
A. Naurazbekova. On the structure of free dual Leibniz algebras. Eurasian mathematical journal, Tome 10 (2019) no. 3, pp. 40-47. http://geodesic.mathdoc.fr/item/EMJ_2019_10_3_a3/