Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_2_a7, author = {M. I. Tleubergenov and G. T. Ibraeva}, title = {On inverse problem of closure of differential systems with degenerate diffusion}, journal = {Eurasian mathematical journal}, pages = {93--102}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a7/} }
TY - JOUR AU - M. I. Tleubergenov AU - G. T. Ibraeva TI - On inverse problem of closure of differential systems with degenerate diffusion JO - Eurasian mathematical journal PY - 2019 SP - 93 EP - 102 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a7/ LA - en ID - EMJ_2019_10_2_a7 ER -
M. I. Tleubergenov; G. T. Ibraeva. On inverse problem of closure of differential systems with degenerate diffusion. Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 93-102. http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a7/
[1] N. V. Abramov, R. G. Mukharlyamov, Zh. K. Kirgizbaev, Control the dynamics of systems with program communications, Monograph, Publishing House of Nizhnevartovsk. State. Univ., Nizhnevartovsk, 2013 (in Russian)
[2] N. P. Erugin, “Construction of the entire set of system of differential equations with integral curve”, Prikl. Mat. Mech., 10:6 (1952), 659–670 (in Russian) | MR
[3] A. S. Galiullin, Methods for the solution of inverse problems of dynamics, Nauka, M., 1986 (in Russian) | MR | Zbl
[4] I. I. Gikhman, A. V. Skorokhod, Stochastic differential equations, Naukova Dumka, Kiev, 1968 (in Russian) | MR | Zbl
[5] G. T. Ibraeva, M. I. Tleubergenov, “Main inverse problem for differential systems with degenerate diffusion”, Ukrainian Mathematical Journal, 65:5 (2013), 787–792 | DOI | MR | Zbl
[6] G. T. Ibraeva, M. I. Tleubergenov, “On the problem of differential systems' closure with degenerate diffusion”, Vest. Ross. Univers. Druzh. Narodov. Ser. Mat. Inform. Fiz., 1 (2008), 12–19
[7] R. Z. Khas'minskiĭ, Stochastic stability of differential equations, Sijthoff Noordhoff, 1980 | MR | Zbl
[8] J. Llibre, R. Ramirez, Inverse problems in ordinary differential equations and applications, Springer International Publishing Switzerland, 2016 | MR | Zbl
[9] I. A. Mukhamedzianov, R. G. Mukharliamov, Equations of program motions, Publisher Ross. Univers. Druzh. Narodov, M., 1986 (in Russian)
[10] P. Sagirov, “Stochastic methods in the dynamics of satellites”, Mekhanika. Sbornik Perevodov, 1974, no. 5, 28–47
[11] A. M. Samoilenko, O. Stanzhytskyi, Qualitative and asymptotic analysis of differential equations with random perturbations, World Scientific, Singapore, 2011 | MR | Zbl
[12] I. N. Sinitsyn, “On the fluctuations of a gyroscope in gimbal suspension”, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 1976, no. 3, 23–31 (in Russian)
[13] M. I. Tleubergenov, “An inverse problem for stochastic differential systems”, Differential Equations, 37:5 (2001), 751–753 | DOI | MR | Zbl
[14] M. I. Tleubergenov, “On the inverse stochastic problem of dynamics”, Vest. Ross. Univers. Druzh. Narodov. Ser. Mat. Inform. Fiz., 1 (1999), 48–55 | MR
[15] M. I. Tleubergenov, “On the inverse stochastic problem of closure”, Dokl. Min. Nauki-Akad. Nauk Resp. Kazakhstan, 1 (1999), 53–60 (in Russian)
[16] M. I. Tleubergenov, “On the inverse stochastic reconstruction problem”, Differential Equations, 50:2 (2014), 274–278 (in Russian) | DOI | MR | Zbl
[17] M. I. Tleubergenov, “On the solving of stochastic problem of closure by designing method”, Vest. Ross. Univers. Druzh. Narodov. Ser. Mat. Inform. Fiz., 2 (2010), 22–28 (in Russian)
[18] S. S. Zhumatov, “Stability of a program manifold of control systems with locally quadratic relations”, Ukrainian Mathematical Journal, 61:3 (2009), 500–509 | DOI | MR | Zbl
[19] S. S. Zhumatov, “Asymptotic stability of implicit differential systems in the vicinity of program manifold”, Ukrainian Mathematical Journal, 66:4 (2014), 625–632 | DOI | MR | Zbl