Some classes of state ideals in state $MV$-algebras
Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 37-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce some types of state ideals in state $MV$-algebras such as: obstinate state ideals, primary state ideals and Boolean state ideals in state $MV$-algebras. We present some characterizations of them and investigate some relations between them. We consider the quotient algebras induced by these state ideals and prove some related theorems.
@article{EMJ_2019_10_2_a2,
     author = {F. Forouzesh and A. Darijani},
     title = {Some classes of state ideals in state $MV$-algebras},
     journal = {Eurasian mathematical journal},
     pages = {37--48},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a2/}
}
TY  - JOUR
AU  - F. Forouzesh
AU  - A. Darijani
TI  - Some classes of state ideals in state $MV$-algebras
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 37
EP  - 48
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a2/
LA  - en
ID  - EMJ_2019_10_2_a2
ER  - 
%0 Journal Article
%A F. Forouzesh
%A A. Darijani
%T Some classes of state ideals in state $MV$-algebras
%J Eurasian mathematical journal
%D 2019
%P 37-48
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a2/
%G en
%F EMJ_2019_10_2_a2
F. Forouzesh; A. Darijani. Some classes of state ideals in state $MV$-algebras. Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 37-48. http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a2/

[1] L. P. Belluce, A. Di Nola, A. Lettieri, “Local MV-algebras”, Rend. Circ. Mat. Palermo (2), 42 (1993), 347–361 | DOI | MR | Zbl

[2] M. Botur, A. Dvurecenskij, “State-morphism algebras general approach”, Fuzzy Sets Sys., 218 (2013), 90–102 | DOI | MR | Zbl

[3] C. C. Chang, “Algebraic analysis of many valued logic”, Trans. Amer. Math. Soc., 88 (1958), 467–490 | DOI | MR | Zbl

[4] R. Cignoli, I. M.L. D'Ottaviano, D. Mundici, Algebraic foundations of many-Valued reasoning, Kluwer Academic, Dordrecht, 2000 | MR | Zbl

[5] LC. Ciungu, “Bosbach and Riečan states on residuated lattices”, J. Appl. Funct. Anal., 2 (2008), 175–188 | MR | Zbl

[6] LC. Ciungu, A. Dvurecenskij, M. Hycko, “State BL-algebras”, Soft Comput., 15 (2011), 619–634 | DOI | Zbl

[7] A. Di Nola, A. Dvurečenskij, “State-morphism MV-algebras”, Ann. Pure Appl. Logic, 161 (2009), 161–173 | DOI | MR | Zbl

[8] A. Di Nola, A. Dvurečenskij, “On some classes of state-morphism MV-algebras”, Math Slovaca, 59 (2009), 517–534 | DOI | MR | Zbl

[9] A. Di Nola, A. Dvurečenskij, A. Lettieri, “On varieties of MV-algebras with internal states”, Inter. J. Approx. Reasoning, (2010), 5 (2010), 680–694 | DOI | MR

[10] A. Dvurečenskij, J. Rachunek, D. Salounova, “State operators on generalizations of fuzzy structures”, Fuzzy Sets Syst., 187 (2012), 58–76 | DOI | MR | Zbl

[11] A. Dvurečenskij, “Subdirectly irreducible state-morphism BL-algebras”, Arch. Math. Log., 50 (2010), 145–160

[12] A. Dvurečenskij, “States on pseudo MV-algebras”, Stud Logica, 68 (2001), 301–327 | DOI | MR | Zbl

[13] F. Forouzesh, E. Eslami, A. Borumand Saeid, “On obstinate ideals in MValgebras”, Politehn. Univ. Bucharest. Sci Bull Series A, Appli Math. Phys., 76 (2014), 53–62 | MR | Zbl

[14] F. Forouzesh, State radical of state ideals in state MV-algebras, submitted | MR

[15] T. Flaminio, F. Montagna, “An algebraic approach to states on MV-algebras”, Fuzzy Logic 2, Proceedings of the 5th EUSFLAT conference (September 11–14, Ostrava), v. II, ed. Novák V., 2007, 201–206

[16] T. Flaminio, F. Montagna, “MV-algebras with internal states and probabilistic fuzzy logic”, Int. J. Approx. Reason., 50 (2009), 138–152 | DOI | MR | Zbl

[17] G. Georgescu, “Bosbach states on fuzzy structures”, Soft Comput., 8 (2004), 217–230 | DOI | Zbl

[18] A. Iorgulescu, Algebras of logic as BCK algebras, Academy of economic studies, Bucharest, Romania, 2008 | MR

[19] LZ. Liu, XY. Zhang, “States on finite linearly ordered I MT L-algebras”, Soft Comput., 15 (2011), 2021–2028 | DOI | Zbl

[20] LZ. Liu, XY. Zhang, “States on R0-algebras”, Soft Comput., 12 (2008), 1099–1104 | DOI | Zbl

[21] LZ. Liu, “On the existence of states on MT L-algebras”, Inf. Sci., 220 (2013), 559–567 | DOI | MR | Zbl

[22] D. Mundici, “Averaging the truth value in Lukasiewicz sentential logic”, Studia Logica, 55 (1995), 113–127 | DOI | MR | Zbl

[23] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria Craiova, 2007

[24] J. Rachunek, D. Salounova, “State operators on GMV-algebras”, Soft Comput., 15 (2011), 327–334 | DOI | Zbl

[25] E. Turunen, J. Mertanen, “States on semi-divisible residuated lattices”, Soft Comput., 12 (2008), 353–357 | DOI | Zbl