Estimates for Maxwell viscoelastic medium "in tension-rates"
Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 30-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The fictitious domain method for the Maxwell viscoelastic medium is considered. An estimate via the small parameter $\alpha$ which characterises the convergence of the solution of an auxiliary problem to the solution of the original problem is obtained.
@article{EMJ_2019_10_2_a1,
     author = {M. Bukenov and D. Azimova},
     title = {Estimates for {Maxwell} viscoelastic medium "in tension-rates"},
     journal = {Eurasian mathematical journal},
     pages = {30--36},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a1/}
}
TY  - JOUR
AU  - M. Bukenov
AU  - D. Azimova
TI  - Estimates for Maxwell viscoelastic medium "in tension-rates"
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 30
EP  - 36
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a1/
LA  - en
ID  - EMJ_2019_10_2_a1
ER  - 
%0 Journal Article
%A M. Bukenov
%A D. Azimova
%T Estimates for Maxwell viscoelastic medium "in tension-rates"
%J Eurasian mathematical journal
%D 2019
%P 30-36
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a1/
%G en
%F EMJ_2019_10_2_a1
M. Bukenov; D. Azimova. Estimates for Maxwell viscoelastic medium "in tension-rates". Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 30-36. http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a1/

[1] M. M. Bukenov, Small parameters in algorithms of elasticity problems, Thesis of the Candidate of physical and mathematical science, Novosibirsk, 1986 (in Russian)

[2] M. M. Bukenov, “Setting dynamic problem of linear viscoelasticity in tension rates”, Siberian journal of computational mathematics, 8:4 (2005), 289–295 (in Russian) | Zbl

[3] K. Chertova, “Locally two-sided approximate solutions in parabolic problems”, Bull. Nov. Comp. Center, Num. Anal., 1994, no. 6, 37–42

[4] A. N. Konovalov, “Fictitious domain method in filtering problems of two-phase incompressible liquid in consideration of capillary forces”, Numerical methods of continuum mechanics, 3:5 (1972), 52–67 (in Russian)

[5] A. N. Konovalov, “Fictitious domain method in torsion problems”, Numerical methods of continuum mechanics, 1:2 (1973), 109–115 (in Russian)

[6] A. N. Konovalov, “About an alternative for fictitious domain method”, Certain problems of computational and applied mathematics, 1975, 191–199 (in Russian) | Zbl

[7] V. I. Patsyuk, Stabilization of dynamic processes in viscoelastic medium, Thesis of the Candidate of physical and mathematical science, 1982 (in Russian)