Criteria for embedding of generalized Bessel and Riesz potential spaces in rearrangement invariant spaces
Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 8-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the spaces of generalized Bessel and Riesz potentials and establish criteria for the embedding of these spaces in rearrangements invariant spaces. To do this we obtain constructive equivalent descriptions for the cones of decreasing rearrangement of potentials. Covering and equivalence of cones are studied with respect to order relations which allows to weaken substantially the assumptions on the kernels of potentials.
@article{EMJ_2019_10_2_a0,
     author = {N. A. Bokayev and M. L. Goldman and G. Zh. Karshygina},
     title = {Criteria for embedding of generalized {Bessel} and {Riesz} potential spaces in rearrangement invariant spaces},
     journal = {Eurasian mathematical journal},
     pages = {8--29},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a0/}
}
TY  - JOUR
AU  - N. A. Bokayev
AU  - M. L. Goldman
AU  - G. Zh. Karshygina
TI  - Criteria for embedding of generalized Bessel and Riesz potential spaces in rearrangement invariant spaces
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 8
EP  - 29
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a0/
LA  - en
ID  - EMJ_2019_10_2_a0
ER  - 
%0 Journal Article
%A N. A. Bokayev
%A M. L. Goldman
%A G. Zh. Karshygina
%T Criteria for embedding of generalized Bessel and Riesz potential spaces in rearrangement invariant spaces
%J Eurasian mathematical journal
%D 2019
%P 8-29
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a0/
%G en
%F EMJ_2019_10_2_a0
N. A. Bokayev; M. L. Goldman; G. Zh. Karshygina. Criteria for embedding of generalized Bessel and Riesz potential spaces in rearrangement invariant spaces. Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 8-29. http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a0/

[1] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988 | MR | Zbl

[2] B. P. Bokayev, T. L. Goldman, G. Zh. Karshygina, “Cones of functions with monotonocity conditions for generalized Bessel and Riesz potetials”, Mathem. Notes, 104:3 (2018), 356–373 | MR | Zbl

[3] M. Z. Berkolayko, V. I. Ovchinnikov, “Inequalities for entire functions of exponential type in the norms of symmetrical spaces”, Proc. of the Steklov Inst. Math., 161, 1983, 3–17 | MR

[4] G. M. Fikhtengolts, Course of differential and integral calculus, Fizmatgiz, 1963

[5] M. L. Goldman, “On optimal embeddings of Bessel and Riesz potentials”, Proc. of the Steklov Inst. Math., 269, 2010, 91–111 | DOI | MR | Zbl

[6] M. L. Goldman, “On the cones of rearrangements for generalized Bessel and Riesz potentials”, Complex Variables and Elliptic Equations, 55:8–10 (2010), 817–832 | DOI | MR | Zbl

[7] A. Gogatishvili, J. S. Neves, B. Opitz, “Optimality of embeddings of Bessel-potential-type spaces”, Function spaces, differential operators and nonlinear analysis, Math Inst. Acad. Sci. Chech Republic, 2005, 97–102 | MR

[8] V. G. Mazya, Sobolev spaces, LSU, 1985 | MR

[9] S. M. Nikolskii, Aproximation of functions of many variables and embedding theorems, Nauka, M., 1969 | MR

[10] R. O'Neil, “Convolution operators and $L(p,q)$ spaces”, Duke Math. J., 30 (1963), 129–142 | DOI | MR | Zbl

[11] E. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1970 | MR | Zbl