Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_2_a0, author = {N. A. Bokayev and M. L. Goldman and G. Zh. Karshygina}, title = {Criteria for embedding of generalized {Bessel} and {Riesz} potential spaces in rearrangement invariant spaces}, journal = {Eurasian mathematical journal}, pages = {8--29}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a0/} }
TY - JOUR AU - N. A. Bokayev AU - M. L. Goldman AU - G. Zh. Karshygina TI - Criteria for embedding of generalized Bessel and Riesz potential spaces in rearrangement invariant spaces JO - Eurasian mathematical journal PY - 2019 SP - 8 EP - 29 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a0/ LA - en ID - EMJ_2019_10_2_a0 ER -
%0 Journal Article %A N. A. Bokayev %A M. L. Goldman %A G. Zh. Karshygina %T Criteria for embedding of generalized Bessel and Riesz potential spaces in rearrangement invariant spaces %J Eurasian mathematical journal %D 2019 %P 8-29 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a0/ %G en %F EMJ_2019_10_2_a0
N. A. Bokayev; M. L. Goldman; G. Zh. Karshygina. Criteria for embedding of generalized Bessel and Riesz potential spaces in rearrangement invariant spaces. Eurasian mathematical journal, Tome 10 (2019) no. 2, pp. 8-29. http://geodesic.mathdoc.fr/item/EMJ_2019_10_2_a0/
[1] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988 | MR | Zbl
[2] B. P. Bokayev, T. L. Goldman, G. Zh. Karshygina, “Cones of functions with monotonocity conditions for generalized Bessel and Riesz potetials”, Mathem. Notes, 104:3 (2018), 356–373 | MR | Zbl
[3] M. Z. Berkolayko, V. I. Ovchinnikov, “Inequalities for entire functions of exponential type in the norms of symmetrical spaces”, Proc. of the Steklov Inst. Math., 161, 1983, 3–17 | MR
[4] G. M. Fikhtengolts, Course of differential and integral calculus, Fizmatgiz, 1963
[5] M. L. Goldman, “On optimal embeddings of Bessel and Riesz potentials”, Proc. of the Steklov Inst. Math., 269, 2010, 91–111 | DOI | MR | Zbl
[6] M. L. Goldman, “On the cones of rearrangements for generalized Bessel and Riesz potentials”, Complex Variables and Elliptic Equations, 55:8–10 (2010), 817–832 | DOI | MR | Zbl
[7] A. Gogatishvili, J. S. Neves, B. Opitz, “Optimality of embeddings of Bessel-potential-type spaces”, Function spaces, differential operators and nonlinear analysis, Math Inst. Acad. Sci. Chech Republic, 2005, 97–102 | MR
[8] V. G. Mazya, Sobolev spaces, LSU, 1985 | MR
[9] S. M. Nikolskii, Aproximation of functions of many variables and embedding theorems, Nauka, M., 1969 | MR
[10] R. O'Neil, “Convolution operators and $L(p,q)$ spaces”, Duke Math. J., 30 (1963), 129–142 | DOI | MR | Zbl
[11] E. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1970 | MR | Zbl